! *****************************************************--*-Fortran-*--********* ! ************************** BLAST GEOMETRY FILE ************************** ! ***************************************************************************** ! ***************************************************************************** ! * This file contains the definitions and values for all of the geometric * ! * variables required by the BLAST reconstruction and Monte Carlo in order * ! * to completely position and orient each of the six types of detectors used * ! * in BLAST. In addition, the BLAST coordinate system and origin as well as * ! * that of each of the six types of detectors are defined here. If you have * ! * any questions, contact Aaron Maschinot. * ! ***************************************************************************** ! ***************************************************************************** ! * All lengths below are in cm; all angles are in degrees. If you wish to * ! * add comments, do so by making the first character in any added line equal * ! * to an exclamation point. * ! ***************************************************************************** ! ***************************************************************************** ! * The geometrical variables for each of the six detectors used in BLAST are * ! * divided into two categories: general variables and specific variables. * ! * For all six of the detector types, there are six general variables, and * ! * these six general variable definitions are identical for all six of the * ! * detector types (hence, the name "general"). The six general variables * ! * correspond to the six degrees of freedom needed to "nail down" that * ! * detector's coordinate system and center within the BLAST (master) * ! * coordinate system and center. Specific variables are, well, specific to * ! * each detector. They differ in definition and number for each detector. * ! * All variables (both general and specific) are defined below. * ! ***************************************************************************** ! ***************************************************************************** ! * Definition of the BLAST (master) system's axes: * ! * +zBLAST-axis: points in the direction of electron beam flow * ! * +yBLAST-axis: points towards the ceiling of the south hall * ! * +xBLAST-axis: points in the remaining direction so as to form a * ! * right-handed coordinate system with the +yBLAST-axis and * ! * the +zBLAST-axis; points generally towards beam left and * ! * the 100 ton door and away from the counting bay * ! * Definition of the BLAST system's center: * ! * The BLAST center point is defined to be the physical center of the * ! * BLAST extended target holding cell. * ! ***************************************************************************** ! ***************************************************************************** ! * Definitions and data for the geometries of the six detectors used in * ! * BLAST are defined below... * ! ***************************************************************************** ! ***************************************************************************** ! * Cerenkov Counters * ! * ------------------------------------------------------------------------- * ! * Definition of a Cerenkov counter: * ! * A Cerenkov counter (CC), as defined in the BLAST geometry, consists of * ! * the Cerenkov detector material (i.e. the aerogel portion of the * ! * detector). The aerogel portion of the detector rests within an * ! * aluminum box; this definition of a CC shall also INCLUDE this box (as * ! * well as all of the volume within, including the aerogel). Note that * ! * the CC's run vertical in general. Note also that, within the aluminum * ! * box, the aerogel material lies adjacent to the front cover of the box; * ! * the rest of the box is just air and reflective material. The PMT's on * ! * either end of the CC shall NOT enter into this definition of a CC. If * ! * desired, they should be entered below in the NonDetectorHardware * ! * section. * ! * Definition of a Cerenkov counter's axes: * ! * +zCC-axis: points in the same direction as a vector whose tail is * ! * located at the midpoint of the entrance plane of the CC and * ! * whose head is located at the midpoint of the exit plane of * ! * the CC; in general, points away from the target * ! * +xCC-axis: points in the same direction as a vector whose tail is * ! * located at the midpoint of the (generally vertical) side of * ! * the CC at theta = 20 degrees and whose head is located at * ! * the midpoint of the (generally vertical) side of the CC at * ! * theta = 80 degrees; in general, points in the direction of * ! * increasing phi for CC's in both sectors * ! * +yCC-axis: points in the remaining direction so as to form a * ! * right-handed coordinate system with the +xCC-axis and the * ! * +zCC-axis; points generally in the +yBLAST direction for * ! * CC's in the left sector and in the -yBLAST direction for * ! * CC's in the right sector * ! * Definition of a Cerenkov counter's center: * ! * The CC center is the point exactly halfway between any two parallel * ! * sides of a CC. In other words, the center of the enclosing aluminum * ! * box shall be taken as the center of the CC. * ! * Definition of Cerenkov counter variables: * ! * GENERAL VARIABLES: * ! * radius: radial position of the CC center point * ! * theta: polar angle of the CC center point * ! * phi: azimuthal angle of the CC center point * ! * alpha: polar angle of the +zCC-axis * ! * beta: azimuthal angle of the +zCC-axis * ! * gamma: angle of rotation of the (final) +xCC-axis as compared to * ! * its position after the successive alpha and beta rotations * ! * have occurred, defined as a rotation about the +zCC-axis * ! * SPECIFIC VARIABLES: * ! * xCC: width of the CC, as projected onto the xCC-axis * ! * yCC: height of the CC, as projected onto the yCC-axis * ! * zCC: thickness of the CC, as projected onto the * ! * zCC-axis * ! * zAlumBox: thickness of the walls of the enclosing aluminum box, as * ! * projected onto the zCC-axis * ! * zAeroGel: thickness of the aerogel region, as projected onto the * ! * zCC-axis * ! * indexRef: index of refraction for the aerogel in the CC * ! * medNum: GEANT medium number for the aerogel in the CC (note that * ! * the medium number for the forward CC should be different * ! * from that for the backward ones (since they have different * ! * indices of refraction) * ! ***************************************************************************** ! CerenkovCounters 8 !num sect radius theta phi alpha beta gamma ! (cm) (deg) (deg) (deg) (deg) (deg) !(cont'd) xCC yCC zCC zAlumBox zAero indexRef ! (cm) (cm) (cm) (cm) (cm) !(cont'd) medNum ! 1 0 359.1000 22.3900 0.0000 23.4960 0.0000 0.0000 57.7850 104.1000 30.4800 0.2000 7.0000 1.0200 42 2 0 341.0890 33.5000 0.0000 56.7500 0.0000 0.0000 80.6450 139.0650 28.5750 0.2000 5.0000 1.0300 42 3 0 288.0430 47.4000 0.0000 90.0000 0.0000 0.0000 100.0000 150.0000 28.5750 0.2000 5.0000 1.0300 42 4 0 230.0840 67.1600 0.0000 90.0000 0.0000 0.0000 100.0000 150.0000 28.5750 0.2000 5.0000 1.0300 42 5 1 359.1000 22.3900 180.0000 23.4960 180.0000 0.0000 57.7850 104.1000 30.4800 0.2000 7.0000 1.0200 42 6 1 341.0890 33.5000 180.0000 56.7500 180.0000 0.0000 80.6450 139.0650 28.5750 0.2000 5.0000 1.0300 42 7 1 288.0430 47.4000 180.0000 90.0000 180.0000 0.0000 100.0000 150.0000 28.5750 0.2000 5.0000 1.0300 42 8 1 230.0840 67.1600 180.0000 90.0000 180.0000 0.0000 100.0000 150.0000 28.5750 0.2000 5.0000 1.0300 42 ! ***************************************************************************** ! * Lead Glass Calorimeters * ! * ------------------------------------------------------------------------- * ! * Definition of a lead glass calorimeter: * ! * A lead glass calorimeter (LG), as defined in the BLAST geometry, * ! * consists of the lead glass calorimeter rectangle (i.e. the actual lead * ! * glass portion of the calorimeter (i.e. the active region)). Note that * ! * the LG's run horizontal in general. The PMT's on either end shall NOT * ! * enter into this definition of a LG. If desired, they should be entered * ! * below in the NonDetectorHardware section. * ! * Definition of a lead glass calorimeter's axes: * ! * +zLG-axis: points in the same direction as a vector whose tail is * ! * located at the midpoint of the entrance plane of the active * ! * region of the LG and whose head is located at the midpoint * ! * of the exit plane of the active region of the LG; in * ! * general, points away from the target * ! * +xLG-axis: points in the same direction as a vector whose tail is * ! * located at the midpoint of the (generally vertical) side of * ! * the active region of the LG at theta = 20 degrees and whose * ! * head is located at the midpoint of the (generally vertical) * ! * side of the active region of the LG at theta = 80 degrees; * ! * in general, points in the direction of increasing phi for * ! * LG's in both sectors * ! * +yLG-axis: points in the remaining direction so as to form a * ! * right-handed coordinate system with the +xLG-axis and the * ! * +zLG-axis; points generally in the +yBLAST direction for * ! * LG's in the left sector and in the -yBLAST direction for * ! * LG's in the right sector * ! * Definition of a lead glass calorimeter's center: * ! * The LG center is the point exactly halfway between any two parallel * ! * sides of a LG's active region. * ! * Definition of Lead Glass Calorimeter variables: * ! * GENERAL VARIABLES: * ! * radius: radial position of LG center point * ! * theta: polar angle of LG center point * ! * phi: azimuthal angle of LG center point * ! * alpha: polar angle of +zLG-axis * ! * beta: azimuthal angle of +zLG-axis * ! * gamma: angle of rotation of the (final) +xLG-axis as compared to * ! * its position after the successive alpha and beta rotations * ! * have occurred, defined as a rotation about the +zLG-axis * ! * SPECIFIC VARIABLES: * ! * xLG: width of LG as projected onto the xLG-axis * ! * yLG: height of LG as projected onto the yLG-axis * ! * zLG: thickness of LG as projected onto the zLG-axis * ! * numXStrip: number of x strips into which the lead glass is divided * ! * numYStrip: number of y strips into which the lead glass is divided * ! ***************************************************************************** ! LeadGlassCalorimeters 2 !num sect radius theta phi alpha beta gamma ! (cm) (deg) (deg) (deg) (deg) (deg) !(cont'd) xLG yLG zLG numXStrip numYStrip ! (cm) (cm) (cm) 1 0 420.0000 22.4200 0.0000 22.8400 0.0000 0.0000 60.9600 76.2000 15.2400 1 5 2 1 420.0000 22.4200 180.0000 22.8400 180.0000 0.0000 60.9600 76.2000 15.2400 1 5 !1 0 400.1240 24.1700 0.0000 22.8400 0.0000 0.0000 ! 60.9600 121.9200 15.2400 2 8 !3 1 400.1240 24.1700 180.0000 22.8400 180.0000 0.0000 ! 60.9600 121.9200 15.2400 2 8 ! ***************************************************************************** ! * Neutron Counters * ! * ------------------------------------------------------------------------- * ! * Definition of a neutron counter: * ! * A neutron counter (NC), as defined in the BLAST geometry, consists of * ! * the neutron detector rectangle (i.e. the scintillator-like part of the * ! * neutron detector (i.e. the active region)). Note that the NC's run * ! * horizontal in general. The PMT's on either end shall NOT enter into * ! * this definition of an NC. If desired, they should be entered below in * ! * the NonDetectorHardware section. * ! * Definition of a neutron counter's axes: * ! * +zNC-axis: points in the same direction as a vector whose tail is * ! * located at the midpoint of the entrance plane of the active * ! * region of the NC and whose head is located at the midpoint * ! * of the exit plane of the active region of the NC; in * ! * general, points away from the target * ! * +xNC-axis: points in the same direction as a vector whose tail is * ! * located at the midpoint of the (generally vertical) side of * ! * the active region of the NC at theta = 20 degrees and whose * ! * head is located at the midpoint of the (generally vertical) * ! * side of the active region of the NC at theta = 80 degrees; * ! * in general, points in the direction of increasing phi for * ! * NC's in both sectors * ! * +yNC-axis: points in the remaining direction so as to form a * ! * right-handed coordinate system with the +xNC-axis and the * ! * +zNC-axis; points generally in the +yBLAST direction for * ! * NC's in the left sector and in the -yBLAST direction for * ! * NC's in the right sector * ! * Definition of a neutron counter's center: * ! * The NC center is the point exactly halfway between any two parallel * ! * sides of a NC's active region. * ! * Definition of Neutron Counter variables: * ! * GENERAL VARIABLES: * ! * radius: radial position of NC center point * ! * theta: polar angle of NC center point * ! * phi: azimuthal angle of NC center point * ! * it is arranged s.t. phi increases clockwise looking along the beam * ! * alpha: polar angle of +zNC-axis * ! * beta: azimuthal angle of +zNC-axis * ! * gamma: angle of rotation of the (final) +xNC-axis as compared to * ! * its position after the successive alpha and beta rotations * ! * have occurred, defined as a rotation about the +zNC-axis * ! * SPECIFIC VARIABLES: * ! * xNC: width of NC as projected onto the xNC-axis * ! * yNC: height of NC as projected onto the yNC-axis * ! * zNC: thickness of NC as projected onto the zNC-axis * ! ***************************************************************************** ! NeutronCounters 16 !num sect radius theta phi alpha beta gamma ! (cm) (deg) (deg) (deg) (deg) (deg) !(cont'd) xNC yNC zNC ! (cm) (cm) (cm) 1 0 414.1036 53.4668 -14.7036 90.0000 0.0000 0.0000 400.0000 22.5000 10.0000 2 0 409.8637 53.0264 -10.6162 90.0000 0.0000 0.0000 400.0000 22.5000 10.0000 3 0 407.0126 52.7237 -6.4167 90.0000 0.0000 0.0000 400.0000 22.5000 10.0000 4 0 405.5795 52.5694 -2.1469 90.0000 0.0000 0.0000 400.0000 22.5000 10.0000 5 0 405.5795 52.5694 2.1469 90.0000 0.0000 0.0000 400.0000 22.5000 10.0000 6 0 407.0126 52.7237 6.4167 90.0000 0.0000 0.0000 400.0000 22.5000 10.0000 7 0 409.8637 53.0264 10.6162 90.0000 0.0000 0.0000 400.0000 22.5000 10.0000 8 0 414.1036 53.4668 14.7036 90.0000 0.0000 0.0000 400.0000 22.5000 10.0000 9 1 730.8200 75.1700 174.7300 90.0000 180.0000 0.0000 400.0000 22.5000 10.0000 10 1 729.0800 75.1400 176.6700 90.0000 180.0000 0.0000 400.0000 22.5000 10.0000 11 1 728.1300 75.1200 178.6200 90.0000 180.0000 0.0000 400.0000 22.5000 10.0000 12 1 728.0000 75.1200 180.8000 90.0000 180.0000 0.0000 400.0000 22.5000 10.0000 13 1 728.5900 75.1300 182.5300 90.0000 180.0000 0.0000 400.0000 22.5000 10.0000 14 1 730.0100 75.1600 184.4800 90.0000 180.0000 0.0000 400.0000 22.5000 10.0000 15 1 732.2100 75.2000 186.4100 90.0000 180.0000 0.0000 400.0000 22.5000 10.0000 16 1 735.1900 75.2600 188.3400 90.0000 180.0000 0.0000 400.0000 22.5000 10.0000 ! ***************************************************************************** ! * Recoil Detectors * ! * ------------------------------------------------------------------------- * ! * Definition of a recoil detector: * ! * A recoil detector (RD), as defined in the BLAST geometry, consists of a * ! * rectangular silicon slab ALONG WITH the entrance and exit thin * ! * substrate layers (these substrate layers are further divided into a * ! * grid of smaller rectangles (for particle location purposes, similar to * ! * a hodoscope)). For use later on, by "active region" we shall mean the * ! * silicon volume ALONG WITH the both substrate layers. * ! * Definition of a recoil detector's axes: * ! * +zRD-axis: points in the same direction as a vector whose tail is * ! * located at the midpoint of the entrance plane of the active * ! * region of the RD and whose head is located at the midpoint * ! * of the exit plane of the active region of the RD; in * ! * general, points away from the target * ! * +xRD-axis: points in the same direction as a vector whose tail is * ! * located at the midpoint of the (generally vertical) side of * ! * the active region of the RD at theta = 20 degrees and whose * ! * head is located at the midpoint of the (generally vertical) * ! * side of the active region of the RD at theta = 80 degrees; * ! * in general, points in the direction of increasing phi for * ! * RD's in both sectors * ! * +yRD-axis: points in the remaining direction so as to form a * ! * right-handed coordinate system with the +xRD-axis and the * ! * +zRD-axis; points in general in the +yBLAST direction for * ! * RD's in the left sector and in the -yBLAST direction for * ! * RD's in the right sector. * ! * Definition of a recoil detector's center: * ! * The RD center is the point exactly halfway between any two parallel * ! * sides of the active region of the RD. * ! * Definition of Recoil Detector variables: * ! * GENERAL VARIABLES: * ! * radius: radial position of RD center point * ! * theta: polar angle of RD center point * ! * phi: azimuthal angle of RD center point * ! * alpha: polar angle of +zRD-axis * ! * beta: azimuthal angle of +zRD-axis * ! * gamma: angle of rotation of the (final) +xRD-axis as compared to * ! * its position after the successive alpha and beta rotations * ! * have occurred, defined as a rotation about +zRD-axis * ! * SPECIFIC VARIABLES: * ! * xRD: width of RD's active region as projected onto the xRD-axis * ! * yRD: height of RD's active region as projected onto the * ! * yRD-axis * ! * zRD: thickness of RD's active region as projected onto the * ! * zRD-axis * ! * numXStrip: number of x strips into which the substrate layers are * ! * divided * ! * numYStrip: number of y strips into which the substrate layers are * ! * divided * ! * zSubstr: thickness of either substrate layer along zRD-axis * ! ***************************************************************************** ! RecoilDetectors 12 !num sect radius theta phi alpha beta gamma ! (cm) (deg) (deg) (deg) (deg) (deg) !(cont'd) xRD yRD zRD numXStrip numYStrip zSubstr ! (cm) (cm) (cm) (cm) 1 0 16.4100 37.6100 0.0000 90.0000 0.0000 0.0000 10.0000 10.0000 0.0300 128 128 0.0010 2 0 10.0150 90.0000 0.0000 90.0000 0.0000 0.0000 10.0000 10.0000 0.0300 128 128 0.0010 3 0 16.4100 142.3900 0.0000 90.0000 0.0000 0.0000 10.0000 10.0000 0.0300 128 128 0.0010 4 0 19.8830 49.1700 0.0000 90.0000 0.0000 0.0000 10.0000 10.0000 0.0300 128 128 0.0010 5 0 15.0450 90.0000 0.0000 90.0000 0.0000 0.0000 10.0000 10.0000 0.0300 128 128 0.0010 6 0 19.8830 130.8300 0.0000 90.0000 0.0000 0.0000 10.0000 10.0000 0.0300 128 128 0.0010 7 1 16.4100 37.6100 180.0000 90.0000 180.0000 0.0000 10.0000 10.0000 0.0300 128 128 0.0010 8 1 10.0150 90.0000 180.0000 90.0000 180.0000 0.0000 10.0000 10.0000 0.0300 128 128 0.0010 9 1 16.4100 142.3900 180.0000 90.0000 180.0000 0.0000 10.0000 10.0000 0.0300 128 128 0.0010 10 1 19.8830 49.1700 180.0000 90.0000 180.0000 0.0000 10.0000 10.0000 0.0300 128 128 0.0010 11 1 15.0450 90.0000 180.0000 90.0000 180.0000 0.0000 10.0000 10.0000 0.0300 128 128 0.0010 12 1 19.8830 130.8300 180.0000 90.0000 180.0000 0.0000 10.0000 10.0000 0.0300 128 128 0.0010 ! ***************************************************************************** ! * Scintillators (a.k.a. Time-Of-Flights or TOF's) * ! * ------------------------------------------------------------------------- * ! * Definition of a scintillator: * ! * A scintillator (SC), as defined in the BLAST geometry, consists of a * ! * rectangular scintillator (i.e. the actual scintillating material * ! * (a.k.a. the "active region")). Note that the SC's run vertical in * ! * general. In addition, each SC definition INCLUDES the thin lead sheet * ! * on the entrance plane side of the SC as well as the "backbone" * ! * aluminum layer on the exit plane side of the SC; both the thin lead * ! * sheet as well as the backbone lie physically against the SC active * ! * region and cover the SC active region completely. The PMT's on either * ! * end of the SC active region shall NOT enter into this definition of a * ! * SC. If desired, they should be entered below in the * ! * NonDetectorHardware section. * ! * Definition of a scintillator's axes: * ! * +zSC-axis: points in the same direction as a vector whose tail is * ! * located at the midpoint of the entrance plane of the * ! * SC active region and whose head is located at the midpoint * ! * of the exit plane of the SC active region; in general, * ! * points away from the target * ! * +xSC-axis: points in the same direction as a vector whose tail is * ! * located at the midpoint of the (generally vertical) side of * ! * the SC active region at theta = 20 degrees and whose head is * ! * located at the midpoint of the (generally vertical) side of * ! * the SC active region at theta = 80 degrees; in general, * ! * points in the direction of increasing phi for SC's in both * ! * sectors * ! * +ySC-axis: points in the remaining direction so as to form a * ! * right-handed coordinate system with the +xSC-axis and the * ! * +zSC-axis; points generally in the +yBLAST direction for * ! * SC's in the left sector and in the -yBLAST direction for * ! * SC's in the right sector. * ! * Definition of a scintillator center: * ! * The SC center is the point exactly halfway between any two parallel * ! * sides of a SC's active region. Note that neither the lead sheet nor * ! * the backbone is included in this definition. * ! * Definition of a scintillator's geometry variables: * ! * GENERAL VARIABLES: * ! * radius: radial position of SC center point * ! * theta: polar angle of SC center point * ! * phi: azimuthal angle of SC center point * ! * alpha: polar angle of +zSC-axis * ! * beta: azimuthal angle of +zSC-axis * ! * gamma: angle of rotation of the (final) +xSC-axis as compared to * ! * its position after the successive alpha and beta rotations * ! * have occurred, defined as a rotation about the +zSC-axis * ! * SPECIFIC VARIABLES: * ! * xSC: width of SC active region as projected onto the xSC-axis * ! * ySC: height of SC active region as projected onto the ySC-axis * ! * zSC: thickness of SC active region as projected onto the * ! * zSC-axis * ! * zPbSh: thickness of entrance-plane thin lead sheet as projected * ! * onto the zSC-axis * ! * zBack: thickness of exit-plane Aluminum backbone layer as * ! * projected onto the zSC-axis * ! ***************************************************************************** ! Scintillators 32 !num sect radius theta phi alpha beta gamma ! (cm) (deg) (deg) (deg) (deg) (deg) !(cont'd) xSC ySC zSC zPbSh zBack ! (cm) (cm) (cm) (cm) (cm) 1 0 392.3850 19.1400 0.0000 23.4960 0.0000 0.0000 15.2400 119.3800 2.5400 0.0254 0.4064 2 0 391.5230 21.3600 0.0000 23.4960 0.0000 0.0000 15.2400 119.3800 2.5400 0.0254 0.4064 3 0 391.2530 23.5900 0.0000 23.4960 0.0000 0.0000 15.2400 119.3800 2.5400 0.0254 0.4064 4 0 391.5760 25.8200 0.0000 23.4960 0.0000 0.0000 15.2400 119.3800 2.5400 0.0254 0.4064 5 0 386.5250 29.8900 0.0000 56.7500 0.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 6 0 375.2330 33.5300 0.0000 56.7500 0.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 7 0 365.5430 37.3700 0.0000 56.7500 0.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 8 0 357.5830 41.4100 0.0000 56.7500 0.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 9 0 338.3560 46.0200 0.0000 90.0000 0.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 10 0 320.4120 49.4500 0.0000 90.0000 0.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 11 0 303.7530 53.2800 0.0000 90.0000 0.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 12 0 288.6000 57.5300 0.0000 90.0000 0.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 13 0 275.6850 62.0200 0.0000 90.0000 0.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 14 0 264.2280 67.1400 0.0000 90.0000 0.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 15 0 255.0560 72.6700 0.0000 90.0000 0.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 16 0 248.4210 78.5500 0.0000 90.0000 0.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 17 1 392.3850 19.1400 180.0000 23.4960 180.0000 0.0000 15.2400 119.3800 2.5400 0.0254 0.4064 18 1 391.5230 21.3600 180.0000 23.4960 180.0000 0.0000 15.2400 119.3800 2.5400 0.0254 0.4064 19 1 391.2530 23.5900 180.0000 23.4960 180.0000 0.0000 15.2400 119.3800 2.5400 0.0254 0.4064 20 1 391.5760 25.8200 180.0000 23.4960 180.0000 0.0000 15.2400 119.3800 2.5400 0.0254 0.4064 21 1 386.5250 29.8900 180.0000 56.7500 180.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 22 1 375.2330 33.5300 180.0000 56.7500 180.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 23 1 365.5430 37.3700 180.0000 56.7500 180.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 24 1 357.5830 41.4100 180.0000 56.7500 180.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 25 1 338.3560 46.0200 180.0000 90.0000 180.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 26 1 320.4120 49.4500 180.0000 90.0000 180.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 27 1 303.7530 53.2800 180.0000 90.0000 180.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 28 1 288.6000 57.5300 180.0000 90.0000 180.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 29 1 275.6850 62.0200 180.0000 90.0000 180.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 30 1 264.2280 67.1400 180.0000 90.0000 180.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 31 1 255.0560 72.6700 180.0000 90.0000 180.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 32 1 248.4210 78.5500 180.0000 90.0000 180.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 ! ***************************************************************************** ! * Back Angle Scintillators (a.k.a. Time-Of-Flights or TOF's) * ! * ------------------------------------------------------------------------- * ! * Note that the SBs have the same geometry as the SCs. They are labled * ! * differently just to keep them distinct from the original TOFs (SCs), * ! * since they are a separate system. js 2.19.3 * ! * Definition of a scintillator: * ! * A scintillator (SB), as defined in the BLAST geometry, consists of a * ! * rectangular scintillator (i.e. the actual scintillating material * ! * (a.k.a. the "active region")). Note that the SB's run vertical in * ! * general. In addition, each SB definition INCLUDES the thin lead sheet * ! * on the entrance plane side of the SB as well as the "backbone" * ! * aluminum layer on the exit plane side of the SB; both the thin lead * ! * sheet as well as the backbone lie physically against the SB active * ! * region and cover the SB active region completely. The PMT's on either * ! * end of the SB active region shall NOT enter into this definition of a * ! * SB. If desired, they should be entered below in the * ! * NonDetectorHardware section. * ! * Definition of a scintillator's axes: * ! * +zSB-axis: points in the same direction as a vector whose tail is * ! * located at the midpoint of the entrance plane of the * ! * SB active region and whose head is located at the midpoint * ! * of the exit plane of the SB active region; in general, * ! * points away from the target * ! * +xSB-axis: points in the same direction as a vector whose tail is * ! * located at the midpoint of the (generally vertical) side of * ! * the SB active region at theta = 20 degrees and whose head is * ! * located at the midpoint of the (generally vertical) side of * ! * the SB active region at theta = 80 degrees; in general, * ! * points in the direction of increasing phi for SB's in both * ! * sectors * ! * +ySB-axis: points in the remaining direction so as to form a * ! * right-handed coordinate system with the +xSB-axis and the * ! * +zSB-axis; points generally in the +yBLAST direction for * ! * SB's in the left sector and in the -yBLAST direction for * ! * SB's in the right sector. * ! * Definition of a scintillator center: * ! * The SB center is the point exactly halfway between any two parallel * ! * sides of a SB's active region. Note that neither the lead sheet nor * ! * the backbone is included in this definition. * ! * Definition of a scintillator's geometry variables: * ! * GENERAL VARIABLES: * ! * radius: radial position of SB center point * ! * theta: polar angle of SB center point * ! * phi: azimuthal angle of SB center point * ! * alpha: polar angle of +zSB-axis * ! * beta: azimuthal angle of +zSB-axis * ! * gamma: angle of rotation of the (final) +xSB-axis as compared to * ! * its position after the successive alpha and beta rotations * ! * have occurred, defined as a rotation about the +zSB-axis * ! * SPECIFIC VARIABLES: * ! * xSB: width of SB active region as projected onto the xSB-axis * ! * ySB: height of SB active region as projected onto the ySB-axis * ! * zSB: thickness of SB active region as projected onto the * ! * zSB-axis * ! * zPbSh: thickness of entrance-plane thin lead sheet as projected * ! * onto the zSB-axis * ! * zBack: thickness of exit-plane Aluminum backbone layer as * ! * projected onto the zSB-axis * ! ***************************************************************************** ! BackAngleScintillators 8 !num sect radius theta phi alpha beta gamma ! (cm) (deg) (deg) (deg) (deg) (deg) !(cont'd) xSB ySB zSB zPbSh zBack ! (cm) (cm) (cm) (cm) (cm) 1 0 244.4734 95.1748 0.0000 90.0000 0.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 2 0 248.5882 101.6387 0.0000 90.0000 0.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 3 0 284.3333 94.4477 0.0000 90.0000 0.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 4 0 287.8789 100.0324 0.0000 90.0000 0.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 5 1 244.4734 95.1748 180.0000 90.0000 180.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 6 1 248.5882 101.6387 180.0000 90.0000 180.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 7 1 284.3333 94.4477 180.0000 90.0000 180.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 8 1 287.8789 100.0324 180.0000 90.0000 180.0000 0.0000 26.2000 180.0000 2.5400 0.0254 0.4064 ! ***************************************************************************** ! * Wire Chambers * ! * ------------------------------------------------------------------------- * ! * Definition of wire chamber: * ! * A Wire Chamber, as defined in the BLAST geometry, consists of two rows * ! * of cells (each row of cells is sometimes referred to a 'superlayer') * ! * enclosed within an aluminum container; the aluminum container IS * ! * included in this definition of a wire chamber (as well as all gas * ! * volume contained within). Additionally, the double layers of mylar on * ! * either the entrance or exit planes of the chamber SHALL also be * ! * included in the definition of a WC. True, not all of the WC's have * ! * such double layers (in particular, the innermost chamber has only an * ! * entrance-plane double mylar layer and the outermost chamber has only an * ! * exit-plane double mylar layer; the middle one has neither); for the * ! * chambers which are lacking double layers of mylar on either/both sides, * ! * set the appropriate variables (described below) to zero. The innermost * ! * chamber in either sector also has a thin layer of Copper covering the * ! * entrance plane; this Copper layer shall also be included in the * ! * definition of a wire chamber (and set to zero for chambers that do not * ! * possess such a Copper layer). Additionally, until the BLAST * ! * spectrometer is completely built, both the entrance layer of the * ! * innermost chamber as well as the exit layer of the outermost chamber * ! * have a Plexiglass covering on them (so that no one accidentally punches * ! * a hole through the thin mylar planes); these plexiglass layers shall * ! * also be included in the definition of a wire chamber. Additionally, in * ! * either sector, between any two adjacent chambers, there are thin * ! * aluminum connector pieces connecting the two chambers (these pieces * ! * serve to keep the chamber gas enclosed within the chambers). These * ! * thin aluminum connector pieces SHALL also be included in the definition * ! * of a wire chamber. However, there are only two sets of thin aluminum * ! * connector pieces between the three chambers in either sector; similar * ! * to the double mylar planes, this aspect causes problems in the * ! * definition of a WC. As such, to remedy this problem, each chamber * ! * shall include in its definition the thin aluminum connector pieces * ! * directly behind it (i.e. further away from the target than the * ! * chamber). For the third chamber (which, by this convention, has no * ! * thin aluminum connector pieces behind it), all the relevant geometric * ! * variables should be set to zero. Note that, conveniently, no chamber * ! * has both a double layer of mylar and a set of thin connector pieces on * ! * the same side, so there will be no chance of overlap in this * ! * definition. * ! * * ! * As we have defined a WC, it has many parts. For use later on, we shall * ! * define by "active region" the portion of a WC containing the sense * ! * wires, the enclosing aluminum container, and the gas volume within. * ! * Note that the containing aluminum container is INCLUDED in this * ! * definition of the "active region", even though it is entirely not * ! * active; the double mylar layers, the Copper layer, and the thin * ! * aluminum connector pieces are not included. * ! * * ! * The wire chambers (in the left sector), when viewed from above, look * ! * something like the cartoon below: * ! * * ! * ----------------------- Plexiglass plane ----------------------------- * ! * ---------------------- Mylar double plane ---------------------------- * ! * ---------------------------------------------------------------------- * ! * | / * ! * | *********************************************************** / * ! * | * superlayer 1 * / * ! * | *********************************************************** / * ! * | / * ! * | ****************************************************** / * ! * | * superlayer 0 * / * ! * | ****************************************************** / * ! * | chamber 2 / * ! * ---------------------------------------------------------- * ! * | / * ! * | Aluminum connector piece 2 / * ! * ------------------------------------------------------ * ! * | / * ! * | ******************************************* / * ! * | * superlayer 1 * / * ! * | ******************************************* / * ! * | / ^ * ! * | ************************************** / |+ * ! * | * superlayer 0 * / |z * ! * | ************************************** / |W * ! * | chamber 1 / |C * ! * ------------------------------------------ |- * ! * | / |a * ! * | Aluminum connector piece 0 / |x * ! * -------------------------------------- |i * ! * | / |s * ! * | *************************** / | * ! * | * superlayer 1 * / | * ! * | *************************** / | * ! * | (physical) chamber 0 / | * ! * | ********************** / <--------------* * ! * | * superlayer 0 * / +xWC-axis * ! * | ********************** / * ! * | chamber 0 / (+yWC-axis out of page * ! * -------------------------- coming towards you) * ! * --- Mylar double plane --- * ! * ------ Copper layer ------ * ! * --- Plexiglass layer ----- * ! * * ! * Definition of wire chamber axes: * ! * +zWC-axis: is perpendicular to both the chamber's entrance and exit * ! * planes; in general, points away from the target * ! * +xWC-axis: points in the same direction as a vector whose tail is * ! * located at the midpoint of the (generally vertical) side of * ! * the WC's active region at theta = 20 degrees and whose head * ! * is located at the midpoint of the (generally vertical) side * ! * of the WC at theta = 80 degrees; in general, points in the * ! * direction of increasing theta for WC's in both sectors * ! * +yWC-axis: points in the remaining direction so as to form a * ! * right-handed coordinate system with the +xWC-axis and the * ! * +zWC-axis; points in general in the +yBLAST direction for * ! * WC's in the left sector and in the -yBLAST direction for * ! * WC's in the right sector (increasing in phi). * ! * Definition of wire chamber center: * ! * The WC center is the point such that: * ! * 1) it lies within the plane which bisects the chamber into top/bottom * ! * mirror images of each other * ! * 2) it lies within the plane which lies everywhere equidistant from * ! * [the outermost sense wire plane in the inner superlayer in the * ! * chamber] and [the innermost sense wire plane in the outer * ! * superlayer in the chamber]; that is, it lies directly between the * ! * two superlayers in a chamber. * ! * 3) it lies halfway along [the portion of the line defined by the * ! * intersection of the planes in 1) and 2)] that intersects the * ! * chamber's active region * ! * All of these statements are a very mathematically precise way to say * ! * that the center of a chamber in defined to be the center of the two * ! * superlayers in that chamber. * ! * However, while this definition of the chamber's center is useful for * ! * reconstruction purposes, it is not useful for Monte Carlo purposes. * ! * For the Monte Carlo, we must define a different center point, one which * ! * corresponds to the geometrical center of a chamber. This Monte Carlo * ! * WC center is the point such that: * ! * 1) it lies within the plane halfway between the chamber's entrance * ! * and exit planes * ! * 2) it lies within the xWC-zWC plane which cuts the chamber into * ! * top-bottom mirror-images of each other * ! * 3) it bisects the portion of the line (lying within the chamber * ! * INCLUDING the aluminum encasing in which the feedthroughs lie) * ! * resulting from the intersection of the planes in 1) and 2) * ! * The radius, theta, and phi variables defined and listed below * ! * correspond to those spherical coordinates of the "superlayer-center" WC * ! * center. To find the "Monte Carlo" WC center, one must ... * ! * Definition of wire chamber variables: * ! * GENERAL VARIABLES: * ! * radius: radial position of "superlayer-center" WC center point * ! * theta: polar angle of "superlayer-center" WC center point * ! * phi: azimuthal angle of "superlayer-center" WC center point * ! * alpha: polar angle of +zWC-axis * ! * beta: azimuthal angle of +zWC-axis * ! * gamma: angle of rotation of the (final) +xWC-axis as compared to * ! * its position after the successive alpha and beta rotations * ! * have occurred, defined as a rotation about +zWC-axis * ! * SPECIFIC VARIABLES: * ! * The wire chambers are geometrically VERY complicated. The cartoons * ! * below try to illustrate the required variables. Descriptions of the * ! * variables follow after. Note that most of these variables are needed * ! * only for correct positioning in the Monte Carlo; the reconstruction * ! * software cares not at all about many of these variables... * ! * * ! * TOP VIEW OF A WIRE CHAMBER * ! * * ! * |---------------------------xChOF---------------------------------| * ! * * ! * |--------------------xChIF-------------------------------| * ! * * ! * ---------------------------------------------Plexiglass exit plane- * ! * ----------------------------------------exit plane of double mylar- * ! * - ------------------------------------------------------------------- * ! * | | | | | / / * ! * | | | | | / / * ! * | | | | / / / * ! * | | A | | | / A / * ! * | | l | | | / l / ^ * ! * | | u | | / / u / |+ * ! * z | m | | | / m / |z * ! * C | | | ----- delta / / |W * ! * h | s | | / (angle) / s / |C * ! * | | i | | | / i / |- * ! * | | d | | | / d / |a * ! * | | e | | / / e / |x * ! * | | | | | / / |i * ! * | | | | | / / |s * ! * | | | |/ / / <---------* * ! * - ----------------------------------------------- +xWC-axis * ! * ----------------entrance plane of double mylar- * ! * ----------------------------------Copper layer- * ! * ------------------------------Plexiglass layer- * ! * * ! * |---| * ! * x80Side * ! * * ! * |----------------xChIN----------------| * ! * * ! * |-------------------xChON---------------------| * ! * * ! * SIDE VIEW OF THE ENTRANCE PLANE OF A WIRE CHAMBER * ! * * ! * - --------- * ! * | | \-------- * ! * | | \-------- * ! * | - | ---\ \-------- * ! * | | | | --------\ \---------- - * ! * | | | | --------\ | | * ! * | | | | --------\ | | * ! * | | | | -------- | - | * ! * y | | | | | | y * ! * C y | | | | y C * ! * h C | | | | C h * ! * O h | | | | h O ^ * ! * N I | | | | I N |+ * ! * 8 N | | | | N 2 |y * ! * | 8 | | | | 2 | |W * ! * | | | | | | | | |C * ! * | | | | -------- | - | |- * ! * | | | | --------/ | | |a * ! * | | | | --------/ | | |x * ! * | | | | --------/ /---------- - |i * ! * | - | ---/ /-------- |s * ! * | | /-------- <---------x * ! * | | /-------- +xWC-axis * ! * - --------- * ! * * ! * |----------------xChIN----------------| * ! * * ! * |-------------------xChON---------------------| * ! * * ! * SIDE VIEW OF THE EXIT PLANE OF A WIRE CHAMBER * ! * * ! * - --------- * ! * | | \-------- * ! * | | \-------- * ! * | - | ---\ \-------- * ! * | | | | --------\ \---------- - * ! * | | | | --------\ | | * ! * | | | | --------\ | | * ! * | | | | -------- | - | * ! * | | | | | | | | * ! * | | | | | | | | * ! * | | | | | | | | * ! * | | | | | | | | * ! * | | | | | | | | * ! * y | | | | | | y * ! * C y | | | | y C * ! * h C | | | | C h * ! * O h | | | | h O ^ * ! * F I | | | | I F |+ * ! * 8 F | | | | F 2 |y * ! * | 8 | | | | 2 | |W * ! * | | | | | | | | |C * ! * | | | | -------- | - | |- * ! * | | | | --------/ | | |a * ! * | | | | --------/ | | |x * ! * | | | | --------/ /---------- - |i * ! * | - | ---/ /-------- |s * ! * | | /-------- <---------x * ! * | | /-------- +xWC-axis * ! * - --------- * ! * * ! * |----------------xChIF----------------| * ! * * ! * |-------------------xChOF---------------------| * ! * * ! * A SLICE OF A CHAMBER THROUGH THE YWC-ZWC PLANE AT THETA = 20 DEGREES * ! * * ! * ------\ * ! * || -----\ * ! * || -----\ * ! * || -----\ * ! * || ------- * ! * - || --- || * ! * | || | \-- || * ! * | || | | --- || * ! * | ||----| | | \-- || - * ! * | || \ | | || | * ! * y || -----| | || | * ! * R || \ || | * ! * e || -----|| y * ! * F || || R * ! * 2 || || e * ! * | || || N * ! * | || || 2 * ! * | || || | * ! * | || || | ^ * ! * | || -----|| | | + * ! * | || / || | | y * ! * | || -----| | || | | W * ! * | || / | | || | | C * ! * | ||----| | | /-- || - | - * ! * | || | | --- || | a * ! * | || | /-- || | x * ! * - || --- || | i * ! * || ------- | s * ! * || -----/ <---------* * ! * || -----/ +zWC-axis * ! * || -----/ * ! * -----/ * ! * * ! * A SLICE OF A CHAMBER THROUGH THE YWC-ZWC PLANE AT THETA = 80 DEGREES * ! * * ! * ------\ * ! * || -----\ * ! * || -----\ * ! * || -----\ * ! * || ------- * ! * - || --- || * ! * | || | \-- || * ! * | || | | --- || * ! * | ||----| | | \-- || - * ! * | || \ | | || | * ! * y || -----| | || | * ! * R || \ || | * ! * e || -----|| y * ! * F || || R * ! * 8 || || e * ! * | || || N * ! * | || || 8 * ! * | || || | * ! * | || || | * ! * | || || | * ! * | || || | * ! * | || || | * ! * | || || | * ! * | || || | ^ * ! * | || -----|| - | + * ! * | || / || | y * ! * | || -----| | || | W * ! * | || / | | || | C * ! * | ||----| | | /-- || | - * ! * | || | | --- || | a * ! * | || | /-- || | x * ! * - || --- || | i * ! * || ------- | s * ! * || -----/ <---------* * ! * || -----/ +zWC-axis * ! * || -----/ * ! * -----/ * ! * * ! * xChIF: width of chamber along the xWC-axis as measured from the * ! * inside of the Aluminum frame on the face farthest from * ! * the target (i.e. the exit plane) * ! * xChIN: width of chamber along the xWC-axis as measured from the * ! * inside of the Aluminum frame on the face nearest to the * ! * target (i.e. the entrance plane) * ! * xChOF: width of chamber along the xWC-axis as measured from the * ! * outside of the Aluminum frame on the face farthest from * ! * the target (i.e. the exit plane) * ! * xChON: width of chamber along the xWC-axis as measured from the * ! * outside of the Aluminum frame on the face nearest to the * ! * target (i.e. the entrance plane) * ! * yChIF2: height of chamber along the yWC-axis as measured from the * ! * inside of the Aluminum frame on the face farthest from * ! * the target (i.e. the exit plane) on the side closest to * ! * theta = 20 degrees * ! * yChIF8: height of chamber along the yWC-axis as measured from the * ! * inside of the Aluminum frame on the face farthest from * ! * the target (i.e. the exit plane) on the side closest to * ! * theta = 80 degrees * ! * yChIN2: height of chamber along the yWC-axis as measured from the * ! * inside of the Aluminum frame on the face nearest to the * ! * target (i.e. the entrance plane) on the side closest to * ! * theta = 20 degrees * ! * yChIN8: height of chamber along the yWC-axis as measured from the * ! * inside of the Aluminum frame on the face nearest to the * ! * target (i.e. the entrance plane) on the side closest to * ! * theta = 80 degrees * ! * yChOF2: height of chamber along the yWC-axis as measured from the * ! * outside of the Aluminum frame on the face farthest from * ! * the target (i.e. the exit plane) on the side closest to * ! * theta = 20 degrees * ! * yChOF8: height of chamber along the yWC-axis as measured from the * ! * outside of the Aluminum frame on the face farthest from * ! * the target (i.e. the exit plane) on the side closest to * ! * theta = 80 degrees * ! * yChON2: height of chamber along the yWC-axis as measured from the * ! * outside of the Aluminum frame on the face nearest to the * ! * target (i.e. the entrance plane) on the side closest to * ! * theta = 20 degrees * ! * yChON8: height of chamber along the yWC-axis as measured from the * ! * outside of the Aluminum frame on the face nearest to the * ! * target (i.e. the entrance plane) on the side closest to * ! * theta = 80 degrees * ! * zCh: thickness of the chamber (note: due to the irregularities * ! * in which chambers have mylar planes on them, the entrance * ! * and exit double planes of mylar are NOT included in this * ! * length) * ! * xReF: length of the inside recessed volume portion of the * ! * superlayer space farther from the target as projected * ! * onto the xWC-axis * ! * xReN: length of the inside recessed volume portion of the * ! * superlayer space nearest to the target as projected onto * ! * the xWC-axis * ! * yReF2: length of the inside recessed volume portion of the * ! * superlayer space farthest from the target and at theta = * ! * 20 degrees as projected onto the yWC-axis * ! * yReF8: length of the inside recessed volume portion of the * ! * superlayer space farthest from the target and at theta = * ! * 80 degrees as projected onto the yWC-axis * ! * yReN2: length of the inside recessed volume portion of the * ! * superlayer space nearest to the target and at theta = 20 * ! * degrees as projected onto the yWC-axis * ! * yReN8: length of the inside recessed volume portion of the * ! * superlayer space nearest to the target and at theta = 80 * ! * degrees as projected onto the yWC-axis * ! * zRe: thickness of either recessed superlayer volume as * ! * projected onto the zWX-axis * ! * delta: angle (in degrees) between the +zWC-axis and the vector * ! * (call it v) whose tail is at the midpoint of the entrance * ! * plane and whose head is at the midpoint of the exit * ! * plane; defined as a rotation about -yWC-axis from * ! * +zWC-axis to v (thus, delta > 0) * ! * x80Side: width of the Aluminum side piece on the theta = 80 degree * ! * side, as projected into the xWC-axis * ! * zFarSide: thickness of the Aluminum side piece on the exit plane * ! * side as projected into the zWC-axis * ! * xOffSlyr: offset length between the chamber center point and the * ! * center of the cell closest to theta = 80 degrees in a * ! * superlayer as projected onto the xWC-axis; this variable * ! * is an array with two possible entries: xOffStSlyr[0] (the * ! * first such entry below) is for superlayer 0 and * ! * xOffStSlyr[1] (the second such entry below) is for * ! * superlayer 1 * ! * zOffSlyr: offset length between the chamber center point and the * ! * center of any cell in a superlayer as projected onto the * ! * zWC-axis; this variable is SIGNED: for superlayer 0, this * ! * value is negative and for superlayer 1 it is positive; * ! * this variable is an array with two possible entries: * ! * zOffStSlyr[0] (the first such entry below) is for * ! * superlayer 0 and zOffStSlyr[1] (the second such entry * ! * below) is for superlayer 1 * ! * epsilon: stereo angle (in degrees) of superlayer 0; this angle is * ! * defined as a rotation of +yWC-axis about +zWC-axis until * ! * it coincides with the cell's +y-axis * ! * xCe: width of a cell, as projected onto a cell's x-axis (which * ! * is rotated away from the +xWC-axis by the epsilon (i.e. * ! * stereo) angle) * ! * zCe: thickness of a cell, as projected onto a cell's z-axis * ! * radiusSW: radius of a sense wire * ! * xOffSW: offset of the sense wire closest to the target as * ! * compared to the center of the cell as projected onto the * ! * cell's +x-axis (which is rotated away from the +xWC-axis * ! * by the epsilon (i.e. stereo) angle) * ! * zOffSW: offset of the sense wire closest to the target as * ! * compared to the center of the cell as projected onto the * ! * +zWC-axis * ! * numCells: number of cells in a superlayer; this variable is an * ! * array with two possible entries: numCells[0] (the first * ! * such entry below) is for superlayer 0 and epsilon[1] (the * ! * second such entry below) is for superlayer 1 * ! * zFa: total thickness of double layer of mylar on either the * ! * entrance or exit face as projected onto the zWC-axis * ! * (note: this thickness includes the thickness of both the * ! * mylar faces AS WELL AS the thickness of the gas space * ! * inbetween (1.0000+zFaN+zFaF) * ! * zFaN: thickness of the mylar face closest to the target on * ! * either the entrance or exit plane as projected onto the * ! * zWC-axis (0.0100) * ! * zFaF: thickness of the mylar face farthest from the target on * ! * either the entrance or exit plane as projected onto the * ! * zWC-axis (0.0100) * ! * zCop: thickness of the Faraday-cage Copper shielding face on * ! * either the entrance or exit plane as projected onto the * ! * zWC-axis (0.0102) * ! * zPlex: thickness of the plexiglass face on either the entrance * ! * or exit plane as projected onto the zWC-axis (0.3175cm) * ! * xSC2MC: component (along the +xCham axis) of the vector position * ! * of the "Monte Carlo center" chamber center (see above) * ! * with respect to the "superlayer center" chamber center * ! * zSC2MC: component (along the +zCham axis) of the vector position * ! * of the "Monte Carlo center" chamber center (see above) * ! * with respect to the "superlayer center" chamber center * ! * xCo80Side: thickness of the 80deg side of the aluminum connector * ! * piece as projected onto the +xCham axis * ! * yCoTop: thickness of the top side of the aluminum connector piece * ! * as projected onto the +yCham axis * ! * zCo: thickness of the aluminum connector pieces as projected * ! * onto the +zCham axis * ! ***************************************************************************** ! WireChambers 6 !num sect radius theta phi alpha beta gamma ! (cm) (deg) (deg) (deg) (deg) (deg) ! xChIF xChIN xChOF xChON yChIF2 yChIF8 ! (cm) (cm) (cm) (cm) (cm) (cm) ! yChIN2 yChIN8 yChOF2 yChOF8 yChON2 yChON8 ! (cm) (cm) (cm) (cm) (cm) (cm) ! zCh xReF xReN yReF2 yReF8 yReN2 ! (cm) (cm) (cm) (cm) (cm) (cm) ! yReN8 zRe delta x80Side zFarSide xOffSlyr ! (cm) (cm) (deg) (cm) (cm) (cm) ! xOffSlyr zOffSlyr zOffSlyr epsilon xCe zCe ! (cm) (cm) (deg) (deg) (cm) (cm) ! radiusSW xOffSW zOffSW numCells numCells zFa ! (cm) (cm) (cm) (cm) ! zFaN zFaF zCop zPlex xSC2MC zSC2MC ! (cm) (cm) (cm) (cm) (cm) (cm) ! xCo80Side yCoTop zCo ! (cm) (cm) (cm) 1 0 109.9484 41.1900 359.9849 73.5532 359.9428 0.0277 171.5648 137.2776 181.9549 147.6676 26.7784 67.0500 20.6370 52.8602 32.8707 75.5812 22.9713 57.6334 22.0107 163.6935 145.0669 26.3685 64.7923 23.0322 57.0838 11.9575 31.4772 3.8625 5.0531 68.7877 68.4215 -2.9788 3.0212 5.0000 7.8000 4.0000 0.0013 0.0500 1.0000 18 19 0.6200 0.0025 0.0025 0.0102 0.0000 -0.0032 0.0053 0.2030 0.2030 14.6000 2 0 158.7792 41.4922 0.0182 73.5450 359.9406 359.9969 244.3121 194.3081 254.7022 204.6981 40.8086 98.1562 31.8520 77.4622 53.8742 113.6610 39.4371 87.4862 32.1000 228.5439 209.9170 41.9843 95.6305 38.6478 87.9219 11.9575 31.4772 3.8625 10.1223 99.8725 99.5064 -2.9788 3.0212 5.0000 7.8000 4.0000 0.0013 0.0500 1.0000 26 27 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0184 0.0301 0.2030 0.2030 14.6000 3 0 207.7539 41.6282 359.9974 73.5437 359.9425 359.9639 301.2888 267.0555 311.6788 277.4455 51.0140 121.7356 44.8822 107.5684 70.3245 143.4856 60.4406 125.5660 21.9761 293.4340 274.8071 61.6071 130.4852 58.2706 122.7763 11.9575 31.4772 3.8625 5.0424 130.7633 130.3972 -2.9788 3.0212 5.0000 7.8000 4.0000 0.0013 0.0500 1.0000 34 35 0.6200 0.0025 0.0025 0.0102 0.0000 -0.0074 0.0120 0.0000 0.0000 0.0000 4 1 109.8503 41.2429 179.9811 73.5558 180.0506 359.9375 171.5648 137.2776 181.9549 147.6676 26.7784 67.0500 20.6370 52.8602 32.8707 75.5812 22.9713 57.6334 22.0107 163.6935 145.0669 26.3685 64.7923 23.0322 57.0838 11.9575 31.4772 3.8625 5.0531 68.7877 68.4215 -2.9788 3.0212 5.0000 7.8000 4.0000 0.0013 0.0500 1.0000 18 19 0.6200 0.0025 0.0025 0.0102 0.0000 -0.0032 0.0053 0.2030 0.2030 14.6000 5 1 158.7936 41.4826 180.0069 73.5432 180.0711 0.0211 244.3121 194.3081 254.7022 204.6981 40.8086 98.1562 31.8520 77.4622 53.8742 113.6610 39.4371 87.4862 32.1000 228.5439 209.9170 41.9843 95.6305 38.6478 87.9219 11.9575 31.4772 3.8625 10.1223 99.8725 99.5064 -2.9788 3.0212 5.0000 7.8000 4.0000 0.0013 0.0500 1.0000 26 27 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0184 0.0301 0.2030 0.2030 14.6000 6 1 207.6545 41.6310 180.0107 73.5429 180.0900 0.0320 301.2888 267.0555 311.6788 277.4455 51.0140 121.7356 44.8822 107.5684 70.3245 143.4856 60.4406 125.5660 21.9761 293.4340 274.8071 61.6071 130.4852 58.2706 122.7763 11.9575 31.4772 3.8625 5.0424 130.7633 130.3972 -2.9788 3.0212 5.0000 7.8000 4.0000 0.0013 0.0500 1.0000 34 35 0.6200 0.0025 0.0025 0.0102 0.0000 -0.0074 0.0120 0.0000 0.0000 0.0000 ! ***************************************************************************** ! * Magnetic Coils * ! * ------------------------------------------------------------------------- * ! * Definition of a magnetic coil: * ! * A magnetic coil (MC), as defined in the BLAST geometry, consists of the * ! * physical magnetic coil. It looks something like the cartoon below: * ! * * ! * |------------------yStr1-----------------| * ! * ___________________________________________ * ! * ____/ \___ * ! * _/ Straight1 \__ * ! * _/ \_ * ! * / C _______________________________________ \ * ! * / u __/ \___ \ * ! * | r / \ \ * ! * | v | *<--center \ C \ * ! * | e | \ u | * ! * | 1 \_ | r | * ! * \ \________________________ | v | * ! * \_ \ | e | * ! * \_ Straight2 Cu \ | 2 | * ! * \____ rv \ / | * ! * \____________________ e4 \ / / * ! * \ \___ ___/ / * ! * |-----yStr2-----| \ C \_______/ / ^ * ! * \_ ur _/ |+ * ! * \__ ve3 __/ |x * ! * \___ Straight3 ___/ |M * ! * \___________/ |C * ! * |- * ! * |-yStr3-| |a * ! * |x * ! * |i * ! * |s * ! * <---------* * ! * +yMC-axis * ! * * ! * Each coil can be considered to be a collection of three straight pieces * ! * and four circular curves. * ! * Definition of a magnetic coil's axes: * ! * +xMC-axis: points in the same direction as a vector whose tail is * ! * located along the face of the MC closest to the target and * ! * whose head is located along the face of the MC farthest from * ! * the target (see the above picture) * ! * +yMC-axis: points in the same direction as a vector whose tail is * ! * located at the midpoint of the (generally vertical) side of * ! * the MC theta = 20 degrees and whose head is located at the * ! * side of the MC at theta = 80 degrees; in general, points in * ! * the direction of increasing phi for LG's in both sectors * ! * +zMC-axis: points in the remaining direction so as to form a * ! * right-handed coordinate system with the +xMC-axis and the * ! * +yMC-axis; points generally in the +yBLAST direction for * ! * MC's in the left sector and in the -yBLAST direction for * ! * MC's in the right sector * ! * Definition of a magnetic coil's center: * ! * The MC center is the point exactly halfway between 1) the OUTER sides * ! * of the St1 and Str3 pieces, 2) the point of lowest zBLAST value on Crv1 * ! * and the point of highest zBLAST value on Crv2, and 3) the thickness * ! * (i.e. the length in the zMC direction) of the MC. * ! * Definition of Magnetic Coil variables: * ! * GENERAL VARIABLES: * ! * radius: radial position of MC center point * ! * theta: polar angle of MC center point * ! * phi: azimuthal angle of MC center point * ! * alpha: polar angle of +zMC-axis * ! * beta: azimuthal angle of +zMC-axis * ! * gamma: angle of rotation of the (final) +xMC-axis as compared to * ! * its position after the successive alpha and beta rotations * ! * have occurred, defined as a rotation about the +zMC-axis * ! * SPECIFIC VARIABLES: * ! * xOffStr1: offset distance between the MC center and the center of * ! * Str1 piece, as projected onto the xMC-axis * ! * yOffStr1: offset distance between the MC center and the center of * ! * Str1 piece, as projected onto the yMC-axis * ! * xStr1: width of Str1 piece as projected onto the xMC-axis * ! * yStr1: height of Str1 piece as projected onto the yMC-axis * ! * zStr1: thickness of Str1 piece as projected onto the zMC-axis * ! * xOffStr2: offset distance between the MC center and the center of * ! * Str2 piece, as projected onto the xMC-axis * ! * yOffStr2: offset distance between the MC center and the center of * ! * Str2 piece, as projected onto the yMC-axis * ! * xStr2: width of Str2 piece as projected onto the xMC-axis * ! * yStr2: height of Str2 piece as projected onto the yMC-axis * ! * zStr2: thickness of Str2 piece as projected onto the zMC-axis * ! * xOffStr3: offset distance between the MC center and the center of * ! * Str3 piece, as projected onto the xMC-axis * ! * yOffStr3: offset distance between the MC center and the center of * ! * Str3 piece, as projected onto the yMC-axis * ! * xStr3: width of Str3 piece as projected onto the xMC-axis * ! * yStr3: height of Str3 piece as projected onto the yMC-axis * ! * zStr3: thickness of Str3 piece as projected onto the zMC-axis * ! * xOffCrv1: offset distance between the MC center and the center of * ! * Crv1 piece, as projected onto the xMC-axis * ! * yOffCrv1: offset distance between the MC center and the center of * ! * Crv1 piece, as projected onto the yMC-axis * ! * thetaBeg1: azimuthal angle where the Crv1 piece begins * ! * thetaEnd1: azimuthal angle where the Crv1 piece ends * ! * radMin1: inside radius of the Crv1 piece * ! * radMax1: outside radius of the Crv1 piece * ! * zCrv1: thickness of Crv1 piece as projected onto the zMC-axis * ! * xOffCrv2: offset distance between the MC center and the center of * ! * Crv2 piece, as projected onto the xMC-axis * ! * yOffCrv2: offset distance between the MC center and the center of * ! * Crv2 piece, as projected onto the yMC-axis * ! * thetaBeg2: azimuthal angle where the Crv2 piece begins * ! * thetaEnd2: azimuthal angle where the Crv2 piece ends * ! * radMin2: inside radius of the Crv2 piece * ! * radMax2: outside radius of the Crv2 piece * ! * zCrv2: thickness of Crv2 piece as projected onto the zMC-axis * ! * xOffCrv3: offset distance between the MC center and the center of * ! * Crv3 piece, as projected onto the xMC-axis * ! * yOffCrv3: offset distance between the MC center and the center of * ! * Crv3 piece, as projected onto the yMC-axis * ! * thetaBeg3: azimuthal angle where the Crv3 piece begins * ! * thetaEnd3: azimuthal angle where the Crv3 piece ends * ! * radMin3: inside radius of the Crv3 piece * ! * radMax3: outside radius of the Crv3 piece * ! * zCrv3: thickness of Crv3 piece as projected onto the zMC-axis * ! ***************************************************************************** ! MagneticCoils 8 !num radius theta phi alpha beta gamma ! (cm) (deg) (deg) (deg) (deg) (deg) !(cont'd) xOffStr1 yOffStr1 xStr1 yStr1 zStr1 xOffStr2 ! (cm) (cm) (cm) (cm) (cm) (cm) ! yOffStr2 xStr2 yStr2 zStr2 xOffStr3 yOffStr3 ! (cm) (cm) (cm) (cm) (cm) (cm) ! xStr3 yStr3 zStr3 xOffCrv1 yOffCrv1 thetaBeg1 ! (cm) (cm) (cm) (cm) (cm) (deg) ! thetaEnd1 radMin1 radMax1 zCrv1 xOffCrv2 yOffCrv2 ! (deg) (cm) (cm) (cm) (cm) (cm) ! thetaBeg2 thetaEnd2 radMin2 radMax2 zCrv2 xOffCrv3 ! (deg) (deg) (cm) (cm) (cm) (cm) ! yOffCrv3 thetaBeg3 thetaEnd3 radMin3 radMax3 zCrv3 ! (cm) (deg) (deg) (cm) (cm) (cm) ! xOffCrv4 yOffCrv4 thetaBeg4 thetaEnd4 radMin4 radMax4 ! (cm) (cm) (deg) (deg) (cm) (cm) ! zCrv4 ! (cm) 1 133.6485 56.4072 22.5000 90.0000 112.5000 270.0000 69.6720 8.8360 53.3400 257.4798 8.8900 -34.3280 81.2132 53.3400 112.7255 8.8900 -69.6720 -97.5277 53.3400 44.7524 8.8900 17.6720 137.5759 0.0000 180.0000 25.3300 78.6700 8.8900 0.0000 -119.9039 180.0000 360.0000 43.0020 96.3420 8.8900 9.9001 -75.1515 141.0698 180.0000 52.9021 106.2421 8.8900 -113.9001 24.8504 321.0698 360.0000 52.9021 106.2421 8.8900 2 133.6485 56.4072 67.5000 90.0000 157.5000 270.0000 69.6720 8.8360 53.3400 257.4798 8.8900 -34.3280 81.2132 53.3400 112.7255 8.8900 -69.6720 -97.5277 53.3400 44.7524 8.8900 17.6720 137.5759 0.0000 180.0000 25.3300 78.6700 8.8900 0.0000 -119.9039 180.0000 360.0000 43.0020 96.3420 8.8900 9.9001 -75.1515 141.0698 180.0000 52.9021 106.2421 8.8900 -113.9001 24.8504 321.0698 360.0000 52.9021 106.2421 8.8900 3 133.6485 56.4072 112.5000 90.0000 202.5000 270.0000 69.6720 8.8360 53.3400 257.4798 8.8900 -34.3280 81.2132 53.3400 112.7255 8.8900 -69.6720 -97.5277 53.3400 44.7524 8.8900 17.6720 137.5759 0.0000 180.0000 25.3300 78.6700 8.8900 0.0000 -119.9039 180.0000 360.0000 43.0020 96.3420 8.8900 9.9001 -75.1515 141.0698 180.0000 52.9021 106.2421 8.8900 -113.9001 24.8504 321.0698 360.0000 52.9021 106.2421 8.8900 4 133.6485 56.4072 157.5000 90.0000 247.5000 270.0000 69.6720 8.8360 53.3400 257.4798 8.8900 -34.3280 81.2132 53.3400 112.7255 8.8900 -69.6720 -97.5277 53.3400 44.7524 8.8900 17.6720 137.5759 0.0000 180.0000 25.3300 78.6700 8.8900 0.0000 -119.9039 180.0000 360.0000 43.0020 96.3420 8.8900 9.9001 -75.1515 141.0698 180.0000 52.9021 106.2421 8.8900 -113.9001 24.8504 321.0698 360.0000 52.9021 106.2421 8.8900 5 133.6485 56.4072 202.5000 90.0000 292.5000 270.0000 69.6720 8.8360 53.3400 257.4798 8.8900 -34.3280 81.2132 53.3400 112.7255 8.8900 -69.6720 -97.5277 53.3400 44.7524 8.8900 17.6720 137.5759 0.0000 180.0000 25.3300 78.6700 8.8900 0.0000 -119.9039 180.0000 360.0000 43.0020 96.3420 8.8900 9.9001 -75.1515 141.0698 180.0000 52.9021 106.2421 8.8900 -113.9001 24.8504 321.0698 360.0000 52.9021 106.2421 8.8900 6 133.6485 56.4072 247.5000 90.0000 337.5000 270.0000 69.6720 8.8360 53.3400 257.4798 8.8900 -34.3280 81.2132 53.3400 112.7255 8.8900 -69.6720 -97.5277 53.3400 44.7524 8.8900 17.6720 137.5759 0.0000 180.0000 25.3300 78.6700 8.8900 0.0000 -119.9039 180.0000 360.0000 43.0020 96.3420 8.8900 9.9001 -75.1515 141.0698 180.0000 52.9021 106.2421 8.8900 -113.9001 24.8504 321.0698 360.0000 52.9021 106.2421 8.8900 7 133.6485 56.4072 292.5000 90.0000 22.5000 270.0000 69.6720 8.8360 53.3400 257.4798 8.8900 -34.3280 81.2132 53.3400 112.7255 8.8900 -69.6720 -97.5277 53.3400 44.7524 8.8900 17.6720 137.5759 0.0000 180.0000 25.3300 78.6700 8.8900 0.0000 -119.9039 180.0000 360.0000 43.0020 96.3420 8.8900 9.9001 -75.1515 141.0698 180.0000 52.9021 106.2421 8.8900 -113.9001 24.8504 321.0698 360.0000 52.9021 106.2421 8.8900 8 133.6485 56.4072 337.5000 90.0000 67.5000 270.0000 69.6720 8.8360 53.3400 257.4798 8.8900 -34.3280 81.2132 53.3400 112.7255 8.8900 -69.6720 -97.5277 53.3400 44.7524 8.8900 17.6720 137.5759 0.0000 180.0000 25.3300 78.6700 8.8900 0.0000 -119.9039 180.0000 360.0000 43.0020 96.3420 8.8900 9.9001 -75.1515 141.0698 180.0000 52.9021 106.2421 8.8900 -113.9001 24.8504 321.0698 360.0000 52.9021 106.2421 8.8900 ! ***************************************************************************** ! * Non Detector Hardware * ! * ------------------------------------------------------------------------- * ! * Any hardware not having to do directly with one of the detectors or * ! * magnetic coils is defined below. This section thus includes things * ! * related to the target, the beam pipe, the mezzanine, etc. The hardware * ! * below is all entered in the "GenGeom" format; only the Monte Carlo cares * ! * about anything listed below. To get an understanding of the GenGeom * ! * format, see the file "gen_geom.f" in /blastmc. * ! ***************************************************************************** ! ! * NOTES: ! * The target container volume is TARG, made of vacuum and shifted 4.75" downstream. ! * Everything else is Aluminum (scattering chamber + storage cell) ! * TCH1 are the chamber top/bot plates ! * TCH2 more stuff defining the square opening [ 2x(p1(tch1)- p1(tch2)) ] x [2x(p2(tch2)] ! * TCH3 downstream rounded edges on the L/R chamber exit sides ! * TCH4 upstream rounded edges on the L/R chamber exit sides ! * TCH5 8" inner diameter, 2" long transition to downstream beam pipe ! * TCH6 scattering chamber exit foils ( 2 x p1(tch6) = foil thickness) ! * TCL1 storage cell [ p2(tcl1) - p1(tcl1) ] is the total cell-wall thickness NonDetectorHardware 53 ! ******************* ! * Target Geometry * ! ******************* !num nam mom typ cop see col med rot o/m x0 y0 z0 p1 p2 p3 p4 p5 ... 1 TARG LAS- BOX 1 0 0 1 0 0 0.0000 0.0000 12.0650 12.4079 15.2400 63.5000 2 TCH1 TARG BOX 1 1 20 9 0 0 0.0000 7.9375 0.0000 12.3825 2.5400 39.8460 3 TCH1 TARG BOX 2 1 20 9 0 0 0.0000 -7.9375 0.0000 12.3825 2.5400 39.8460 4 TCH2 TARG BOX 1 1 20 9 0 0 9.5250 0.0000 37.3060 2.8575 5.3975 2.5400 5 TCH2 TARG BOX 2 1 20 9 0 0 -9.5250 0.0000 37.3060 2.8575 5.3975 2.5400 6 TCH2 TARG BOX 3 1 20 9 0 0 -9.5250 0.0000 -37.3060 2.8575 5.3975 2.5400 7 TCH2 TARG BOX 4 1 20 9 0 0 9.5250 0.0000 -37.3060 2.8575 5.3975 2.5400 8 TCH3 TARG TUBS 1 1 20 9 10 0 9.5250 0.0000 29.2100 5.3975 10.1600 2.8575 0 180 9 TCH3 TARG TUBS 2 1 20 9 10 0 -9.5250 0.0000 29.2100 5.3975 10.1600 2.8575 0 180 10 TCH4 TARG TUBS 1 1 20 9 10 0 9.5250 0.0000 -29.2100 5.3975 10.1600 2.8575 180.0000 360.0000 11 TCH4 TARG TUBS 2 1 20 9 10 0 -9.5250 0.0000 -29.2100 5.3975 10.1600 2.8575 180.0000 360.0000 12 TCH5 TARG TUBE 1 1 20 9 0 0 0.0000 0.0000 37.3060 10.1600 14.9220 2.5400 13 TCH6 TARG BOX 1 1 20 9 0 0 12.3977 0.0000 -2.5400 0.0125 10.4775 37.3060 14 TCH6 TARG BOX 2 1 60 9 0 0 -12.3977 0.0000 -2.5400 0.0125 10.4775 37.3060 15 TCL1 TARG TUBE 1 1 60 0 0 0 0.0000 0.0000 -12.0650 0.0000 0.7550 20.0000 16 TCL2 TCL1 TUBE 1 1 60 9 0 0 0.0000 0.0000 0.0000 0.7500 0.7550 20.0000 ! ************************** ! * Beam Hardware Geometry * ! ************************** !num nam mom typ cop see col med rot o/m x0 y0 z0 p1 p2 p3 p4 p5 ... 1 BEAM LAS- TUBE 1 0 0 1 0 1 0.0000 0.0000 12.0650 0.0000 15.0000 500.0000 2 FLG1 BEAM TUBE 1 1 1 9 0 0 0.0000 0.0000 41.1160 7.4610 10.1600 1.2700 3 FLG1 BEAM TUBE 2 1 1 9 0 0 0.0000 0.0000 51.5940 7.4610 10.1600 1.2700 4 FLG1 BEAM TUBE 3 1 1 9 0 0 0.0000 0.0000 54.1340 7.4610 10.1600 1.2700 5 FLG1 BEAM TUBE 4 1 1 9 0 0 0.0000 0.0000 121.1900 7.4610 10.1600 1.2700 6 FLG1 BEAM TUBE 5 1 1 9 0 0 0.0000 0.0000 152.9400 7.4610 10.1600 1.2700 7 FLG1 BEAM TUBE 6 1 1 9 0 0 0.0000 0.0000 188.8040 7.4610 10.1600 1.2700 8 FLG1 BEAM TUBE 7 1 1 9 0 0 0.0000 0.0000 -41.1160 7.4610 10.1600 1.2700 9 FLG1 BEAM TUBE 8 1 1 9 0 0 0.0000 0.0000 -51.5940 7.4610 10.1600 1.2700 10 FLG1 BEAM TUBE 9 1 1 9 0 0 0.0000 0.0000 -106.8400 7.4610 10.1600 1.2700 11 FLG1 BEAM TUBE 10 1 1 9 0 0 0.0000 0.0000 -142.7040 7.4610 10.1600 1.2700 12 FLG1 BEAM TUBE 11 1 1 9 0 0 0.0000 0.0000 -198.8120 7.4610 10.1600 1.2700 13 FLG1 BEAM TUBE 12 1 1 9 0 0 0.0000 0.0000 -234.6760 7.4610 10.1600 1.2700 14 FLG2 BEAM TUBE 1 1 1 9 0 0 0.0000 0.0000 123.7300 3.0100 10.1600 1.2700 15 FLG2 BEAM TUBE 2 1 1 9 0 0 0.0000 0.0000 150.4000 3.0100 10.1600 1.2700 16 FLG2 BEAM TUBE 3 1 1 9 0 0 0.0000 0.0000 191.3440 3.0100 10.1600 1.2700 17 FLG2 BEAM TUBE 4 1 1 9 0 0 0.0000 0.0000 -54.1340 3.0100 10.1600 1.2700 18 FLG2 BEAM TUBE 5 1 1 9 0 0 0.0000 0.0000 -104.3000 3.0100 10.1600 1.2700 19 FLG2 BEAM TUBE 6 1 1 9 0 0 0.0000 0.0000 -145.2440 3.0100 10.1600 1.2700 20 FLG2 BEAM TUBE 7 1 1 9 0 0 0.0000 0.0000 -196.2720 3.0100 10.1600 1.2700 21 FLG2 BEAM TUBE 8 1 1 9 0 0 0.0000 0.0000 -237.2160 3.0100 10.1600 1.2700 22 FLG3 BEAM TUBE 1 1 1 9 0 0 0.0000 0.0000 147.8600 3.0100 4.4450 1.2700 23 FLG3 BEAM TUBE 2 1 1 9 0 0 0.0000 0.0000 193.8840 3.0100 4.4450 1.2700 24 FLG3 BEAM TUBE 3 1 1 9 0 0 0.0000 0.0000 -56.6740 3.0100 4.4450 1.2700 25 FLG3 BEAM TUBE 4 1 1 9 0 0 0.0000 0.0000 -101.7600 3.0100 4.4450 1.2700 26 FLG3 BEAM TUBE 5 1 1 9 0 0 0.0000 0.0000 -239.7560 3.0100 4.4450 1.2700 27 PIP3 BEAM TUBE 1 1 2 9 0 0 0.0000 0.0000 87.6620 7.4610 7.6200 32.2580 28 PIP4 BEAM TUBE 1 1 4 9 0 0 0.0000 0.0000 135.7950 3.0100 3.1750 10.7950 29 PIP5 BEAM TUBE 1 1 2 9 0 0 0.0000 0.0000 170.8720 7.4610 7.6200 16.6620 30 PIP5 BEAM TUBE 2 1 2 9 0 0 0.0000 0.0000 -124.7720 7.4610 7.6200 16.6620 31 PIP5 BEAM TUBE 3 1 2 9 0 0 0.0000 0.0000 -216.7440 7.4610 7.6200 16.6620 32 PIP6 BEAM TUBE 1 1 2 9 0 0 0.0000 0.0000 46.3550 7.4610 7.6200 3.9690 33 PIP6 BEAM TUBE 2 1 3 9 0 0 0.0000 0.0000 -46.3550 7.4610 7.6200 3.9690 34 PIP7 BEAM TUBE 1 1 4 9 0 0 0.0000 0.0000 214.7760 3.0100 3.1750 19.6220 35 PIP8 BEAM TUBE 1 1 4 9 0 0 0.0000 0.0000 -79.2170 3.0100 3.1750 21.2730 36 PIP9 BEAM TUBE 1 1 4 9 0 0 0.0000 0.0000 -170.7580 3.0100 3.1750 24.2440 37 PIP0 BEAM TUBE 1 1 4 9 0 0 0.0000 0.0000 -252.4560 3.0100 3.1750 11.4300 ! ***************** ! * Mezz Hardware * ! ***************** !num nam mom typ cop see col med rot o/m x0 y0 z0 p1 p2 p3 p4 p5 ... !1 I01- LAS- BOX 1 0 0 0 0 0 95.0000 28.5000 -343.0000 10.0000 244.0000 15.0000 !2 I01- LAS- BOX 2 0 0 0 0 0 95.0000 28.5000 467.0000 10.0000 244.0000 15.0000 !3 I01- LAS- BOX 3 0 0 0 0 0 -154.5000 28.5000 -343.0000 10.0000 244.0000 15.0000 !4 I01- LAS- BOX 4 0 0 0 0 0 -154.5000 28.5000 467.0000 10.0000 244.0000 15.0000 !5 I01A I01- BOX 1 1 5 7 0 0 0.0000 0.0000 0.0000 0.7000 244.0000 15.0000 !6 I01B I01- BOX 1 1 5 7 0 0 0.0000 0.0000 14.3000 10.0000 244.0000 0.7000 !7 I01B I01- BOX 2 1 5 7 0 0 0.0000 0.0000 -14.3000 10.0000 244.0000 0.7000 !8 PIP1 LAS- TUBE 1 1 6 9 0 0 0.0000 0.0000 109.8500 7.5970 7.6200 70.0000 !9 FLNG LAS- TUBE 1 1 5 9 0 0 0.0000 0.0000 181.8500 0.7475 9.0000 2.0000 !10 PIP2 LAS- TUBE 1 1 6 9 0 0 0.0000 0.0000 283.8500 0.7475 0.8125 100.0000 !11 PIP1 LAS- TUBE 2 1 6 9 0 0 0.0000 0.0000 -109.8500 7.5970 7.6200 70.0000 !12 FLNG LAS- TUBE 2 1 5 9 0 0 0.0000 0.0000 -181.8500 0.7475 9.0000 2.0000 !13 PIP2 LAS- TUBE 2 1 6 9 0 0 0.0000 0.0000 -283.8500 0.7475 0.8125 100.0000 !14 MEZZ LAS- BOX 1 0 0 0 0 0 -30.5000 303.0000 0.0000 137.0000 30.5000 497.0000 !15 I02- MEZZ BOX 1 0 0 0 0 0 125.6000 0.0000 0.0000 11.4000 30.5000 497.0000 !16 I02- MEZZ BOX 2 0 0 0 0 0 -125.6000 0.0000 0.0000 11.4000 30.5000 497.0000 !17 I02A I02- BOX 1 1 21 7 0 0 0.0000 0.0000 0.0000 1.2500 30.5000 497.0000 !18 I02B I02- BOX 1 1 25 7 0 0 0.0000 29.2500 0.0000 11.4000 1.2500 497.0000 !19 I02B I02- BOX 2 1 21 7 0 0 0.0000 -29.2500 0.0000 11.4000 1.2500 497.0000 !20 I03- MEZZ BOX 1 0 0 0 0 0 0.0000 -15.0000 0.0000 124.9000 15.0000 8.9000 !21 I03- MEZZ BOX 2 0 0 0 0 0 0.0000 -15.0000 121.9000 124.9000 15.0000 8.9000 !22 I03- MEZZ BOX 3 0 0 0 0 0 0.0000 -15.0000 243.8000 124.9000 15.0000 8.9000 !23 I03- MEZZ BOX 4 0 0 0 0 0 0.0000 -15.0000 365.7000 124.9000 15.0000 8.9000 !24 I03- MEZZ BOX 5 0 0 0 0 0 0.0000 -15.0000 487.7000 124.9000 15.0000 8.9000 !25 I03- MEZZ BOX 6 0 0 0 0 0 0.0000 -15.0000 -121.9000 124.9000 15.0000 8.9000 !26 I03- MEZZ BOX 7 0 0 0 0 0 0.0000 -15.0000 -243.8000 124.9000 15.0000 8.9000 !27 I03- MEZZ BOX 8 0 0 0 0 0 0.0000 -15.0000 -365.7000 124.9000 15.0000 8.9000 !28 I03- MEZZ BOX 9 0 0 0 0 0 0.0000 -15.0000 -487.7000 124.9000 15.0000 8.9000 !29 I03A I03- BOX 1 1 32 9 0 0 0.0000 0.0000 0.0000 124.9000 15.0000 0.4000 !30 I03B I03- BOX 1 1 34 9 0 0 0.0000 14.6000 0.0000 124.9000 0.4000 8.9000 !31 I03B I03- BOX 2 1 39 9 0 0 0.0000 -14.6000 0.0000 124.9000 0.4000 8.9000 !32 I04- MEZZ BOX 1 0 0 0 0 0 0.0000 -7.6200 0.0000 5.0800 7.6200 497.0000 !33 I04- MEZZ BOX 2 0 0 0 0 0 57.0000 -7.6200 0.0000 5.0800 7.6200 497.0000 !34 I04- MEZZ BOX 3 0 0 0 0 0 -57.0000 -7.6200 0.0000 5.0800 7.6200 497.0000 !35 I04A I04- BOX 1 1 41 9 0 0 0.0000 0.0000 0.0000 0.5000 7.6200 497.0000 !36 I04B I04- BOX 1 1 41 9 0 0 0.0000 7.1200 0.0000 5.0800 0.5000 497.0000 !37 I04B I04- BOX 2 1 41 9 0 0 0.0000 -7.1200 0.0000 5.0800 0.5000 497.0000 ! ***************** ! * Ring Hardware * ! ***************** !num nam mom typ cop see col med rot o/m x0 y0 z0 p1 p2 p3 p4 p5 ... !1 RING LAS- BOX 1 0 1 0 0 0 2500.000 0.0000 0.000 4000.000 1000.000 8000.000 !2 XBM1 RING TUBE 1 1 6 9 0 0 -2500.000 0.0000 0.000 7.597 7.620 3000.000 !3 XBM1 RING TUBE 2 1 6 9 0 0 2500.000 0.0000 0.000 7.597 7.620 3000.000 !4 XBM2 RING TUBE 1 1 6 9 11 0 2310.000 0.0000 -3457.000 7.597 7.620 500.000 !5 XBM2 RING TUBE 2 1 6 9 12 0 1767.000 0.0000 -4267.000 7.597 7.620 500.000 !6 XBM2 RING TUBE 3 1 6 9 13 0 957.000 0.0000 -4810.000 7.597 7.620 500.000 !7 XBM2 RING TUBE 4 1 6 9 14 0 0.000 0.0000 -5000.000 7.597 7.620 500.000 !8 XBM2 RING TUBE 5 1 6 9 17 0 -2310.000 0.0000 -3457.000 7.597 7.620 500.000 !9 XBM2 RING TUBE 6 1 6 9 16 0 -1767.000 0.0000 -4267.000 7.597 7.620 500.000 !10 XBM2 RING TUBE 7 1 6 9 15 0 -957.000 0.0000 -4810.000 7.597 7.620 500.000 !11 XBM2 RING TUBE 8 1 6 9 17 0 2310.000 0.0000 3457.000 7.597 7.620 500.000 !12 XBM2 RING TUBE 9 1 6 9 16 0 1767.000 0.0000 4267.000 7.597 7.620 500.000 !13 XBM2 RING TUBE 10 1 6 9 15 0 957.000 0.0000 4810.000 7.597 7.620 500.000 !14 XBM2 RING TUBE 11 1 6 9 14 0 0.000 0.0000 5000.000 7.597 7.620 500.000 !15 XBM2 RING TUBE 12 1 6 9 11 0 -2310.000 0.0000 3457.000 7.597 7.620 500.000 !16 XBM2 RING TUBE 13 1 6 9 12 0 -1767.000 0.0000 4267.000 7.597 7.620 500.000 !17 XBM2 RING TUBE 14 1 6 9 13 0 -957.000 0.0000 4810.000 7.597 7.620 500.000 !18 DP01 RING TUBS 1 1 4 10 4 0 0.000 0.0000 -2500.000 2500.000 2600.000 20.000 8.2500 14.2500 !19 DP02 RING TUBS 1 1 4 10 4 0 0.000 0.0000 -2500.000 2500.000 2600.000 20.000 30.7500 36.7500 !20 DP03 RING TUBS 1 1 4 10 4 0 0.000 0.0000 -2500.000 2500.000 2600.000 20.000 53.2500 59.2500 !21 DP04 RING TUBS 1 1 4 10 4 0 0.000 0.0000 -2500.000 2500.000 2600.000 20.000 75.7500 81.7500 !22 DP05 RING TUBS 1 1 4 10 4 0 0.000 0.0000 -2500.000 2500.000 2600.000 20.000 98.2500 104.2500 !23 DP06 RING TUBS 1 1 4 10 4 0 0.000 0.0000 -2500.000 2500.000 2600.000 20.000 120.7500 126.7500 !24 DP07 RING TUBS 1 1 4 10 4 0 0.000 0.0000 -2500.000 2500.000 2600.000 20.000 143.2500 149.2500 !25 DP08 RING TUBS 1 1 4 10 4 0 0.000 0.0000 -2500.000 2500.000 2600.000 20.000 165.7500 171.7500 !26 DP09 RING TUBS 1 1 4 10 4 0 0.000 0.0000 2500.000 2500.000 2600.000 20.000 188.2500 194.2500 !27 DP10 RING TUBS 1 1 4 10 4 0 0.000 0.0000 2500.000 2500.000 2600.000 20.000 210.7500 216.7500 !28 DP11 RING TUBS 1 1 4 10 4 0 0.000 0.0000 2500.000 2500.000 2600.000 20.000 233.2500 239.2500 !29 DP12 RING TUBS 1 1 4 10 4 0 0.000 0.0000 2500.000 2500.000 2600.000 20.000 255.7500 261.7500 !30 DP13 RING TUBS 1 1 4 10 4 0 0.000 0.0000 2500.000 2500.000 2600.000 20.000 278.2500 284.2500 !31 DP14 RING TUBS 1 1 4 10 4 0 0.000 0.0000 2500.000 2500.000 2600.000 20.000 300.7500 306.7500 !32 DP15 RING TUBS 1 1 4 10 4 0 0.000 0.0000 2500.000 2500.000 2600.000 20.000 323.2500 329.2500 !33 DP16 RING TUBS 1 1 4 10 4 0 0.000 0.0000 2500.000 2500.000 2600.000 20.000 345.7500 351.7500 ! ***************************************************************************** ! * BLASTFill * ! * ------------------------------------------------------------------------- * ! * By setting BLASTFill below equal to a particular medium in GEANT, you * ! * can specify what you wanted the non-detector non-hardware volume of BLAST * ! * to be filled with. Unless we impose some drastic changes, such space * ! * will always be filled with air. * ! ***************************************************************************** BLASTFill 2 ! ***************************************************************************** ! * WCGas * ! * ------------------------------------------------------------------------- * ! * By setting WCGas below equal to a particular medium in GEANT, you can * ! * specify the gas you want to fill up the wire chambers with. * ! ***************************************************************************** WCGas 245 ! ***************************************************************************** ! * WCEEGas * ! * ------------------------------------------------------------------------- * ! * By setting WCEEGas below equal to a particular medium in GEANT, you can * ! * specify the gas you want to fill up the entrance and exit double planes * ! * on the wire chambers with. * ! ***************************************************************************** WCEEGas 252 ! ***************************************************************************** ! * Rotation Matrices * ! * ------------------------------------------------------------------------- * ! * Eventually, the rotation matrices required by GEANT to position the * ! * NonDetectorHardware will be put into this file. For now, they exist in * ! * scattered places throughout the GEANT files. If you have no clue what * ! * a rotation matrice in this context is, don't worry about it. They do not * ! * enter anywhere into the reconstruction library. * ! ***************************************************************************** RotationMatrices 18 !num xTheta xPhi yTheta yPhi zTheta zPhi ! (deg) (deg) (deg) (deg) (deg) (deg) ! a rotation of 90 degrees about the +x-axis 1 90.0000 0.0000 0.0000 0.0000 90.0000 270.0000 ! a rotation of 90 degrees about the +y-axis 2 180.0000 0.0000 90.0000 90.0000 90.0000 0.0000 ! a rotation of 90 degrees about the +z-axis 3 90.0000 90.0000 90.0000 180.0000 0.0000 0.0000 ! a rotation of 90 degrees about the -x-axis 4 90.0000 0.0000 180.0000 0.0000 90.0000 90.0000 ! a rotation of 90 degrees about the -y-axis 5 0.0000 0.0000 90.0000 90.0000 90.0000 180.0000 ! a rotation of 90 degrees about the -z-axis 6 90.0000 270.0000 90.0000 0.0000 0.0000 0.0000 ! a rotation of 180 degrees about the +x-axis 7 90.0000 0.0000 90.0000 270.0000 180.0000 0.0000 ! a rotation of 180 degrees about the +y-axis 8 90.0000 180.0000 90.0000 90.0000 180.0000 0.0000 ! a rotation of 180 degrees about the +z-axis 9 90.0000 180.0000 90.0000 270.0000 0.0000 0.0000 !fbdfgdn 10 90.0000 90.0000 0.0000 0.0000 90.0000 0.0000 ! Ring: a rotation about the +y-axis by 22.5 degrees 11 112.5000 0.0000 90.0000 90.0000 22.5000 0.0000 ! Ring: a rotation about the +y-axis by 45 degrees 12 135.0000 0.0000 90.0000 90.0000 45.0000 0.0000 ! Ring: a rotation about the +y-axis by 67.5 degrees 13 157.5000 0.0000 90.0000 90.0000 67.5000 0.0000 ! Ring: a rotation about the +y-axis by 90 degrees 14 180.0000 0.0000 90.0000 90.0000 90.0000 0.0000 ! Ring: a rotation about the +y-axis by 112.5 degrees 15 157.5000 180.0000 90.0000 90.0000 112.5000 0.0000 ! Ring: a rotation about the +y-axis by 135 degrees 16 135.0000 180.0000 90.0000 90.0000 135.0000 0.0000 ! Ring: a rotation about the +y-axis by 157.5 degrees 17 112.5000 180.0000 90.0000 90.0000 157.5000 0.0000 ! Ring: a rotation about the +y-axis by 180 degrees 18 90.0000 180.0000 90.0000 90.0000 180.0000 0.0000