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Model independent radiative corrections in processes of polarized electron-nucleon
elastic scattering
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Explicit formulas for radiative correction~RC! calculations for elasticep scattering are presented. Two
typical measurements of polarization observables, such as beam-target asymmetry or recoil proton polarization,
are considered. The possibilities of taking into account realistic experimental acceptances are discussed. The
FORTRAN codeMASCARAD for providing the RC procedure is presented. A numerical analysis is done for the
kinematical conditions of CEBAF.
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I. INTRODUCTION

Precise polarization measurements of nucleon form
tors in electron scattering are an essential component o
research program at new-generation electron accelera
such as the Continuous Electron Beam Accelerator Fac
~CEBAF! @1#. This unprecedented precision requires know
edge of higher-order electromagnetic effects at a perc
level. The purpose of our work is to analyze radiative c
rections in elastic electron-proton scattering and deve
proper computational techniques that could be used in
periments at Jefferson Lab~CEBAF! and other electron ac
celerator laboratories.

The modern approach to radiative correction~RC! calcu-
lations assumes exact calculations of the lowest-order m
independent correction. This correction includes the Q
processes of radiation of an unobserved real photon, vac
polarization, and lepton-photon vertex corrections. Th
processes give the largest contributions that can be calcu
exactly. Uncertainties of the model independent RC c
come only from fits and data used for structure functio
The calculation of model dependent corrections~box-type
diagrams, emission by hadrons! requires additional assump
tions about hadron interactions, so it has additional pur
theoretical uncertainties, which are hard to control. T
model dependent correction is much smaller compared
leptonic radiation because it does not include a large lo
rithmic term ln(Q2/m2). In this paper we concentrate on th
calculation of the model independent correction as the m
contribution to the total RC. Treatment of the model dep
dent correction requires different methods and will be
subject of a separate investigation.

There are two basic methods of calculation of model
dependent QED radiative corrections. The first one is c
nected with the introduction of an artificial parameter (D)
separating the momentum phase space into soft and
parts. One can find a classical review introducing this f
malism and further developments for elasticep scattering in
Refs.@2–4#. For the soft-photon part, the calculation is pe
formed in the soft-photon approximation, in which the ph
0556-2821/2001/64~11!/113009~11!/$20.00 64 1130
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ton energy is considered to be small with respect to all m
menta and masses in the problem. So this parameterD)
should be chosen as small as possible to reduce the re
evaluated approximately. However, it cannot be chosen
small because of possible numerical instabilities in calcu
ing hard-photon emission. An exact calculation within t
approach of Mo and Tsai has been performed only for
case of unpolarized deep inelastic scattering. At the end
the 1970s Bardin and Shumeiko developed an approach@5#
involving extraction and cancellation of infrared divergenc
without introducing this artificial parameter.1 Later on many
calculations were performed within this approach and a f
FORTRAN codes were created to deal with numerical calcu
tions. The best known of them areTERAD and POLRAD. A
detailed review of the approach is presented in Ref.@7#. In
this paper we use this approach to calculate the RC of low
order to the transferred polarization and asymmetry in ela
electron-proton scattering. The method allows us to calcu
the model independent correction exactly. By ‘‘exact’’ w
mean the calculation of the lowest-order correction for wh
extraction and cancellation of the infrared divergence
performed without introducing the artificial parameter th
separates the soft and hard parts in phase space, an
which integration over photon phase space is perform
without approximations like peaking or leading logarithm
Instead, this integration is performed numerically within t
given accuracy. This accuracy does not usually exceed 0.
so contributions of the order of the electron mass squared
be dropped. In general, the result for the RC can be prese
in the form of a series in powers ofm2:

sRC5aFA ln
Q2

m2
1B1OS m2

Q2D G . ~1!

The coefficientsA and B are responsible for the first-orde
leading and next-to-leading contributions, respectively. Th

1A detailed comparison of explicit formulas obtained within th
two approaches considered is given in Ref.@6# for the case of deep
inelastic scattering.
©2001 The American Physical Society09-1
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are independent of the electron mass, and our approac
lows us to calculate them explicitly. The term of ord
m2/Q2 is always negligible for valuesQ2 in the GeV2 region
and above.

We should mention here that there exists another
proach that satisfies the properties listed above. It is a m
fied method of electron structure functions. Usually this a
proach provides a direct calculation of leading terms in
orders. However, in Ref.@8# it was shown that it can be
improved to obtain exactly the first-order next-to-leadi
contribution and even to reconstruct the main part of
second-order one. In@9# this approach was used to calcula
the radiative correction in the case of recoil polarizati
measurement within so-called leptonic variables.

The observed cross section of the process

e~k1!1N~p1!→e8~k2!1N~p2! ~2!

is described by one independent variable, which is usu
chosen to be the square of the four-momentum trans
There are two ways to reconstruct the variable when b
lepton and nucleon final momenta are measured. In the
case it will be denoted asQl

252(k12k2)2, and in the sec-
ond case it isQh

252(p22p1)2. It is clear that there is no
difference between these definitions at the Born level. Ho
ever, emission of an additional photon in the final state
reaction ~2! makes the definitions ofQ2 nonidentical. We
consider both cases in this paper. In the first case the s
ture of the bremsstrahlung cross section looks like

ds

dQl
2 ;a3E d3k

k0
( KF 2~Qh

2!A ~3!

whereK is a kinematical coefficient calculable exactly in th
lowest order. It depends on photon variables.F 2 is a bilinear
combination of nucleon form factors dependent onQh

2 only,
which is a function of photon momentum. Usually only fin
momenta are measured in a certain range controlled b
function of the acceptanceA, which is 1 or 0, depending on
whether the final particles make it to the detectors or not. T
integral~3! should not be analytically calculated for two re
sons. The first one is the dependence of the form factors
Qh

2 . We avoid using specific models for them. The seco
one is that the acceptance is usually a very complicated fu
tion of the kinematical variables, dependent on the pho
momentum.

For the second method of reconstruction of the transfe
momentum squared, the structure of the cross section is

ds

dQh
2 ;a3( F 2~Qh

2!E d3k

k0
KA. ~4!

In this case the squared form factor does not depend on
photon momentum and for 4p kinematics (A51) this inte-
gral can be calculated analytically. In the experimental c
ditions at the Jefferson Lab the~JLab! @1#, both the final
electron and the proton were detected in order to red
background. However, elastic scattering kinematics was
11300
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stored by the final proton kinematics, while electron mome
tum was integrated over. Therefore, the formalism of Eq.~4!
applies for this case.

In this paper we calculate the model independent RC
two experimental situations which are currently dealt with
Collaborations at CEBAF, Mainz accelerater~MAMI !, and
MIT Bates: measurement of polarization asymmetry in ter
of leptonic variables; measurement of asymmetry in rec
proton in terms of hadronic variables. Our approach allo
one to take into account the lowest-order RC exactly and
calculate the RC within experimental cuts.

II. KINEMATICS AND BORN PROCESS

The Born2 cross section of the process~2! can be written
in the form

ds05
M0

2

4p1k1
dG05M0

2 dQ2

16pS2
, ~5!

whereS52k1p. Kinematical limits forQ2 are defined as

0<Q2<
ls

S1m21M2
, ls5S224m2M2, ~6!

wherem,M are the electron and proton masses. Becaus
axial symmetry the integration over the azimuthal anglef
can be performed analytically. However, in our case the
nematical cuts are dependent on this angle so we will c
sider the two-dimensional Born cross section

ds05
M0

2

4p1k1
dG05M0

2 dQ2df

32p2S2
. ~7!

The born matrix element is

M25
e4

Q4
Lmn

0 Wmn . ~8!

We use standard definitions for the~unpolarized! leptonic
tensor and for the hadronic tensor

Wmn
u 5(

i 51

2

wmn
i Fi ~9!

with

wmn
1 52gmn , wmn

2 5
p1mp1n

M2
, ~10!

andtp5Q2/4M2,

F154tpM2GM
2 , F254M2

GE
21tpGM

2

11tp
. ~11!

2Throughout the paper, by ‘‘Born’’ we mean ‘‘one photon e
change.’’
9-2
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It is convenient to define the contractions

2uB
15Lmn

0 wmn
1 52Q2, ~12!

2uB
25Lmn

0 wmn
2 5

1

M2
@S~S2Q2!2M2Q2#. ~13!

As a result, for the Born cross section we obtain the w
known formula

ds0

dQ2
5

2pa2

S2Q4 (
i

uB
i Fi , ~14!

which can be reduced to

ds0

dQ2
'

4pa2

Q4

GE
21tpGM

2

11tp
~15!

in the ultrarelativistic approximationM2!S2.

A. Polarized part of cross section

We consider two possible polarization measurements.
~1! The initial proton is polarized and the final electron

detected to reconstructQ2. In this case there are four exper
mental situations for asymmetry definition: the target is p
larized along~perpendicular! to the beam orqW (q5p22p1).
Corresponding polarization four-vectors are denoted ashL

(hT) or hL
q (hT

q).
~2! Polarization and momentum of the final proton a

measured. Two polarization states should be considered
final proton is polarized along (hL8) and perpendicular (hT8)

to qW .
If the polarization vector is kept in a general form th

polarization part of the hadronic tensor can be written as

Wmn
p 5(

i 53

4

wmn
i Fi ~16!

with

wmn
3 52 i emnls

qlhs

M
, wmn

4 5 i emnls

qlp1shq

M3
. ~17!

For the case of initially polarized particles, we have
choose the corresponding representation for the polariza
vector and structure functions in the forms

F3522M2GEGM , F452M2GM

GE2GM

11tp
, ~18!

when the total hadronic tensorWmn5Wmn
u 1Wmn

p . In the
case of final polarization states (h→h8) the same formulas
are used for structure functions~18! up to the different sign
for the last term (F4→2F4).
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The polarization four-vectorh can be expressed in term
of the four-momentum of the particles in the reaction. T
four considered cases correspond to four representation
polarization vectors:

hL5
1

Als
S k12

S

M
p1D , ~19!

hT5
1

Alsl
@~2SX12M2Q214m2M2!k1

1lsk22~SQ212m2Sx!p1#,

hL
q5

1

Alq
S 2M ~k12k2!2

~S2X!

M
p1D ,

hT
q5

1

Alql
@~2M2Q22SxX!k11~2M2Q2

1SxS!k22Q2~S1X!p1#,

where l5SXQ22m2lq2M2Q4 and lq5Sx
214M2Q2, Sx

5S2X. We note that the task of the calculation is reduced
contraction of the leptonic tensors at the Born and RC lev
with wmn

3,4 , using the corresponding polarization vector rep
sentation of the general form

h52~ahk11bhk21chp1! ~20!

and subsequent integration. The variableX is calculated in
different ways for the Born and radiative processes. In
first case it is defined asS2Q2 and it depends on the inelas
ticity S2Q22v for RC. The definition of inelasticityv is
given in the next section. It should be noted that we do
consider effects of normal polarization, because the polar
tion parts of both the Born and model independent RC cr
sections are exactly zero in this case. It allows us to k
only three basis vectors in Eq.~20!.

The polarization part of the Born cross section is given
Eq. ~14! for two additional terms in the sum overi 53,4. The
functionsu i

B have the forms

u3
B5

2m

M
~qh k2j2hjQ2!,

u4
B5

mQ2qh

M3 ~2p1j2k2j!, ~21!

where the lepton polarization vector can be defined as

j5
2

Als
S S

m
k12m p1D . ~22!

If Q2 is calculated in terms of hadronic variables, t
polarization vector expansion reads

hL,T8 52@aL,T8 k11bL,T8 ~p12p2!1cL,T8 p1# ~23!
9-3
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with

aL850, bL852
Q212M2

2MAlM

, cL85
Q2

2MAlM

, ~24!

and

aT85
Q2~Q214M2!

2AlhAlM

, ~25!

bT85
Q2S12M2Qu

2

2AlhAlM

, ~26!

cT852
Q2~2S2Qu

2!

2AlhAlM

. ~27!

Here lh5SQ2(S2Qu
2)2M2Qu

42m2lM and lM5Q2(Q2

14M2). As in the case above, we keep the variableQu
2 ,

which is Q2 andQ21u for the Born and RC cases, respe
tively. The quantityu is related to the invariant mass of th
unobserved state. It is also called inelasticity and is defi
below @for the case of hadronic variables see Eq.~54!#.

It is easy to verify that the four-vectorshL8 andhT8 satisfy
the necessary conditions of normalization and orthogona

hL8p25hT8p250, hL8hT850, hL8
25hT8

2521.

In the rest frame of the final protonp25(M ,0W ) the vector
of longitudinal polarization reads

hL85~0,nW !, nW 251. ~28!

The direction of the three-vectornW coincides with the direc-
tion of the three-vectorpW 2 in the laboratory system. There
fore, hL8 indeed describes the longitudinal polarization of t

scattered proton. The four-vectorhT8 has the form (0,mW ),

nW •mW 50, in both the laboratory and rest frame systems of
scattered proton. Thus, it describes the transverse pola
tion in the scattered plane. It can be defined up to a sign o

In the case of longitudinal polarization, only the term wi
GM

2 contributes to the spin dependent part of the cross
tion. The reason is that the part proportional toGEGM goes
to zero forh5h i. The situation is just contrary in the case
transverse polarization. A simple calculation gives

hL8

hT8
5

GM

GE
A2q2

M2

k1p11k1p2

A4~k1p11k1p2!21q2~4M22q2!
.

~29!

It is easy to verify that in the Breit system, wherep1

5(E,2qW /2), p25(E,qW /2), q5(0,qW ), the right side of Eq.
~29! coincides~up to a sign! with the expression given in
@10#. Indeed, in this system«15«25A2q2/2 sinuB/2 (uB is
the electron scattering angle in the Breit system! and
11300
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~k1p11k1p2!

A4~k1p11k1p2!21q2~4M22q2!
5

1

2 cosuB/2
.

III. RADIATIVE EFFECTS

A. Leptonic variables

For the cross section of the radiative process

e~k1!1N~p1!→e8~k2!1g~k!1N~p2!, ~30!

we have the expression

ds r5
Mr

2

4p1k1
dG r . ~31!

The cross section of the process depends onQl
2 which for

simplicity is referred to asQ2 in this section. The phase
space

dG r5
1

~2p!5

d3p2

2p20

d3k2

2k20

d3k

2k0
d~p11k12k22k2p2!

~32!

can be parametrized in terms of three variables: inelasti
v5L22M2 (L5p11k12k2), t5kq/kp1, and the angle
fk between planes (q,k) and (k1 ,k2). Using the result
~V.7.7! of @11# we have

dG r5
dQ2

4~2p!4SE0

vm dv

4Alq
E

tmin

tmax
dt

v

~11t!2E0

2p

dfk ,

~33!

where lq5(v1Q2)214M2Q2 and we use the variablet
instead of the standardt,

t5Q21v2R, R5
v

11t
. ~34!

It allows us to present the final result in a form close to th
in Refs.@12–16#. The limits of integration are defined as

vm5
1

2m2
~AlsAlm22m2Q22Q2S! ~35!

5
2Q2@ls2Q2~S1m21M2!#

Q2S12m2Q21AlsAlm

~36!

'S2Q22
M2Q2

S
~37!

and

2M2tmax,min5v1Q26Alq. ~38!

The matrix element squared of the radiative process i
9-4
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Mr
25

e6

Qh
4

Lmn
r Wmn . ~39!

The leptonic tensor of the radiative process is standard
can be found, for example, in@14#. We note that here we us
a more standard definition of the tensors~with an additional
factor of 2 compared to those from Ref.@14#!. For contrac-
tions we have

Lmn
r wmn

i 54pAlq(
j 51

3

Rj 23u i j . ~40!

The functionsu i j are similar to the ones given in Appendix
of Ref. @13#. However, there they are integrated overfk . We
refrain from this integration because of possible depende
of the acceptance function on this angle. The explicit form
the functions in our general case is discussed in the App
dix.

We note that the well-known formula for the soft-photo
approximation is immediately obtained on keeping the te
with j 51 and restricting integration overv as v1,v,v2
!S ~small photon energy!:

ds r

dQ2 5
2a

p
~ l m21!ln

v2

v1

ds0

dQ2 , ~41!

where l m5 ln(Q2/m2). For angular integration the formul
~27! of Ref. @15# was used.

Straightforward integration over photon phase space
not possible because of infrared divergence. The first ste
the solution is the identity transformation of the integrand

sR5sR2s IR1s IR5sF1s IR , ~42!

where sF is finite for k→0 ~here and below we use th
shortened notation for differential cross sectionssR
[dsR /dQ2, and so on!. There is some ambiguity in th
definition of s IR . Only the asymptotic expression in th
limit k→0 is unambiguous.3 In our case we constructs IR
using the term withj 51 in Eq. ~40! and form factors esti-
mated at the Born point. This term is factorized in front
the Born cross section as

s0

2

pE d3k

2k0
FIR , FIR5S k1

2k1k
2

k2

2k2kD 2

. ~43!

As a result, the infrared part can be written in the factoriz
form

s IR5
a

p
dR

IRs05
a

p
~dS1dH!s0 . ~44!

3There is one more limitation. We must provide the conditions
applicability of the theorem about changing the order of integrat
and the limit. For example, uniform convergence is required.
practice, this means that we may subtract the quantity with the s
denominator.
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The quantitiesdS anddH appear after additional splitting o
the integration region over the inelasticityv by the infinitesi-
mal parameterv̄:

dS5
21

p E
0

v̄
dvE dn21k

~2pm!n24k0

FIRd„~L2k!22M2
…,

dH5
21

p E
v̄

vm
dvE d3k

k0
FIRd„~L2k!22M2

…. ~45!

We note that, in contrast to the Mo and Tsai formalism, h
the artificial parameterv̄ completely cancels in the final ex
pressions. The way to calculate these integrals was sugge
in the @5# ~see also@15# and the review@7#!. In our case we
have

dS52S PIR1 ln
v̄

mM
D ~ l m21!1 ln

S~S2Q2!

m2M2
1Sf ,

dH52~ l m21!ln
vm

v̄
. ~46!

These contributions have to be added to the vertex cor
tion, which is standard:

dV522S PIR1 ln
m

m D ~ l m21!2
1

2
l m
2 1

3

2
l m221

p2

6
.

~47!

For this sum we have the following expression where
infrared divergent termPIR and the quadratic terml m

2 are
explicitly canceled out:

a

p
~dS1dH1dV!5d in f1dVR , ~48!

where

d in f5
a

p
~ l m21!ln

vm
2

S~S2Q2!
,

dVR5
a

p F3

2
l m222

1

2
ln2

S

S2Q2
1Li2S 12

M2Q2

S~S2Q2!
D

2
p2

6 G . ~49!

Here we used the ultrarelativistic expression for the funct
Sf from @17#.

Finally, the cross section that takes into account radia
effects can be written as

sobs5s0ed in f~11dVR1dvac!1sF . ~50!

Here the correctionsd in f and dvac come from radiation of
soft photons and effects of vacuum polarization. The corr
tion dVR is an infrared-free sum of factorized parts of the re

f
n
n

e

9-5
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and virtual photon radiation, andsF is the infrared-free con-
tribution of the bremsstrahlung process:

sF52
a3

2S2E
0

vm
dvE

tmin

tmax dt

11tE0

2p

dfk

3(
i

F (
j 51

3

ARj 22u i j

F i

Qh
4 24FIR

0 u i
B

F i
0

RQl
4G . ~51!

HereA is integrated over thef acceptance function.

B. Hadronic variables

For the cross section of the radiative process

e~k1!1N~p1!→e8~k2!1g~k!1N~p2!, ~52!

we have an expression similar to Eq.~31!:

ds r5
Mr

2

4p1k1
dG r . ~53!

The parametrization of photonic phase space and integra
over it developed for so-called hadronic emission within
Bardin and Shumeiko approach@5# can be directly applied to
this case. Thus the phase space~32! can be parametrized in
terms of three invariant variables@18,19#; namely, inelastic-
ity u5(k21k)22m252k2k, w52k1k, andz52p2k:

dG r5
dQ2df

~4p!4SE0

um
duE

wmin

wmax
dwE

zmin

zmax dz

pA2Rz

, ~54!

where Rz comes from the Gramm determinant@16Rz
5D(k1 ,p1 ,p2 ,k)# and coincides with the standardRz func-
tion appearing in the Bardin-Shumeiko approach@5,18#. Ex-
plicitly it reads

Rz5Azz
222Bzz1Cz . ~55!

For completeness we give the coefficients in our notation4

Az5lq5~u1Q2!214Q2m2, ~56!

Bz5u~u1Q2!sq2~u2Q2!Sw22m2Q2~u2w!,

Cz5~usq2Sw!214M2uw~Q21u2w!24M2m2~u2w!2,

wheresq5S2Q21w2u.
We note that we introduced the invariant variablez which

corresponds to the azimuthal angle in Eq.~33!. This variable
is more convenient for introducing explicit expressions
experimental cuts.

The limits of integration in Eq.~54! are defined as

um5
1

2M2
~AlsAlM22M2Q22Q2S! ~57!

4Q2 in subsections B, C isQh
2 .
11300
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e
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5
2Q2@ls2Q2~S1m21M2!#

Q2S12M2Q21AlsAlM

~58!

and

wmax,min5
u

2~u1m2!
~Q21u12m26Alq!. ~59!

The limits zmin,max are defined as solutions of the equati
Rz50:

lqzmax,min5Bz6AD, ~60!

where

D54@M2lq1m2Q42Q2S~S2Q22u!#

3@m2~w2u!21uw~w2u2Q2!#. ~61!

The two solutions of the equationD50 give limits onw @Eq.
~59!#.

The matrix element squared of the radiative process
calculated as

Mr
252

e6

Q4
Lmn

r Wmn52
e6

Q4
~TIR1T31T41T34! ~62!

where

T35
4aL,T8 F3

MS S 2
m2

w2 ~Q4z22Q2Su1Q2uz2u2S!

1
SQ2

u
~w22Q2!1

S

w
~4Q413Q2u1u2!2SwD ,

T45
22Q2aL,T8 F 4

M3S
S 2m2

w2 ~Q2Su2Q2uz22S2u1Su2

12Suz22uz2!1
S

w
~22Q414Q2S22Q2u22Q2z

12Su2u2!22S21Sw12SzD ,

T345
2Q2

M3S
~aL,T8 F 4Q222M2cL,T8 F322bL,T8 F 4Q2

2cL,T8 F 4Q2!S 2
m2

w2 ~Q2z2Su22Sz12z2!

1
2SzQ2

uw
1

S

u
~2S2w22z!1

S

w
~2Q222S1u! D .

The contributionTIR is

TIR54S m2

w2 1
m2

u2 2
Q2

uwDT0 , ~63!
9-6
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T052
Q2

M3@2M2F3~aL,T8 Q22cL,T8 Q2

12cL,T8 S!1Q2~Q222S!F4~aL,T8

22bL,T8 2cL,T8 !#.

The structure functionsF3 and F4 are defined in Eq.~18!
and are functions ofQh

2 . We note that the Born cross sectio
can be written in terms ofT0 for ah ,bh ,ch taken foru→0:

s05
pa2

Q4S2 T0
B . ~64!

The radiative cross section can be presented as

sR5
2a3

4S2Q4E dudwdz

pA2Rz

A~TIR1T31T41T34!. ~65!

Performing the explicit integration over the region of sm
energies (0,u1,u2!m2,M2,Q2,S), we obtain the well-
known result in the soft-photon limit:

sR52
a

p
s0E

u1

u2
duF1

u
1

m2

u~u1m2!
2

Q2

uAlq

ln
wmax

wmin
G

5
2a

p
ln

u2

u1
~ l m21!s0 . ~66!

The radiative cross section has an infrared divergence
for this case an identity transformation like~42! has to be
performed also. However, the form factor is not depend
on photon variables, so only the acceptance function sho
be subtracted. The relevant integrals look similar. As a res
the infrared part can be written in the factorized form

s IR5
a

p
dR

h,IRs05
a

p
~dS

h1dH
h !s0 . ~67!

The quantitiesdS anddH appear after additional splitting o
the integration region over the inelasticityv by the infinitesi-
mal parameterv̄:

dS
h5

21

p E
0

ū
duE dn21k

~2pm!n24k0

FIRd„~Lh2k!22m2
…,

dH
h 5

21

p E
ū

um
duE d3k

k0
FIRd„~Lh2k!22m2

…, ~68!

whereLh5k11p12p2 andFIR is defined in Eq.~43!. The
integration gives the following explicit results:
11300
l

so

t
ld
lt,

dS
h52S PIR1 ln

ū

mm
D ~ l m21!111 l m2 l m

2 2
p2

6
,

dH
h 52~ l m21!ln

um

ū
2

1

2
ln2

um

m2 1 ln
um

m2

2 l w~ l m1 l w2 l v!2
p2

6
2Li2S 2

um

Q2D ,

l v5 ln
um

Q2
, l w5 lnS 11

um

Q2D . ~69!

Their sum and the contribution of the vertex function yie
again the result free of infrared divergence:

dVR
h 5 l mS l v2 l w1

3

2D2 l v212
3

2
l w
2 2

1

2
l v
212l wl v

2Li2S Q2

Q21um
D . ~70!

The cross section that takes into account radiative effe
can be written as

sobs5s0~11dVR
h 1dvac!1sF

h . ~71!

The explicit expression forsF
h is

sF
h52

a3

4Q4S2E
0

um
duE

wmin

wmax
dwE

zmin

zmax dz

pA2Rz

3@A~TIR1T31T41T34!2TIR
B # ~72!

with TIR
B 5TIR

B (T0→T0
B).

C. Kinematical cuts

In this section we show how experimental cuts can
introduced in this approach. As an example we consider
conditions of the experiment@1# at CEBAF.

The following restrictions on the momentum of the fin
electron and proton have to be made. We consider the h
resolution spectrometer~HRS! @1# as a rectangular area wit
some energy acceptance. We describe this rectangle by
angles between corresponding planes:ux

e,p anduy
e,p . For one

of the scattered particles these angular definitions are g
in Fig. 1. The upper index corresponds to the detected
ticle, namely, the electron or the proton. The angles and m
menta of the final particles being measured in the labora
frame have to be expressed in terms of kinematical inv
ants. The simplest way to do it is to apply the formalism
Gramm determinants, for which a detailed description can
found in Ref.@11#. We will give starting expressions in term
of four-momenta and Gramm determinants as well as exp
results for the invariant variables used in Eq.~54!. In terms
of Gramm determinants the momenta~in the rest frame of
p1) of the final proton and electron are given by the formu
9-7
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up2u252
D~p1 ,p2!

p1
2 , uk2u252

D~p1 ,k2!

p1
2 . ~73!

This gives immediately for the Born process

up2u5
Alq

2M
, uk2u5

Alz

2M
~74!

for both Born and radiative processes. Herelz5(S2Q2

2z1)224M2m2, Sqz5S2Q22z1.
The cosine of the polar angle of the direction of the fin

proton ~with respect to the beam direction! is defined as

cosup25
k1p1 p2p12p1

2 p2k1

D~p1 ,k1!D~p1 ,p2!
. ~75!

It gives

sin2up25
4lsxM

2

lMS2
~76!

wherelsx5SXQ22Sx
2M2. We have to useX5S2Q2 and

Sx5Q2 for the Born process andX5S2Q22u and Sx
5Q21u for the radiative one. In terms of the angle th
horizontal and vertical angles of the proton momentum a

sinuy
p5sinf sinup2 ,

tanux
p5cosf tanup2 , ~77!

wheref was introduced in Eq.~7!.
At the Born level all vectors (p2 , k1, andk2) are in the

same plane. However, for the unobserved photon there
nonzero angleDf between the planes (k1 ,p2) and (k1 ,k2).
In terms of Gramm determinants it is defined as

cosDf5

GS p1 k1 p2

p1 k1 k2
D

D~p1 ,k1 ,k2!D~p1 ,k1 ,p2!
. ~78!

Explicitly we have

FIG. 1. Recoil proton angle definitions. The beam and
hadron-arm detector of the HRS define the horizontal plane.
11300
l

a

sin2Df52
S2

4Qe
2lsxlqz

$@S~u2w!2z1u1Q2w#2

14Qe
2M2uw1Q2~2w1z1!z1~Q21u!1z1

2uQ2

12z1Q2uw22Sz1~u1w!Q2% ~79!

wherelqz5SSqz22M2Qe
2 , Qe

25Q21u2w, andz15z1u
2w. Now we can define the angles of the final electron
the radiative process:

sinuy
e5sin~f1Df!sinuk2 ,

tanux
e5cos~f1Df!tanuk2 , ~80!

where uk2 is the polar angle of the final electron. For th
latter we have

sin2uk25
4Qe

2lqzM
2

Sqz
2 S2

. ~81!

IV. NUMERICAL RESULTS

In this section we present theFORTRAN codeMASCARAD

~Sec. IV A! developed on the basis of the formalism pr
sented in the last sections. This code uses Monte Carlo m
ods to calculate the radiative corrections to the observa
quantities in polarizedep scattering measurements. The n
merical results of applying this code for the kinematical co
ditions of Jlab are given in Secs. IV B and IV C with lep
tonic and hadronic variables, respectively. In the l
subsection we discuss the influence of experimental cuts
observable quantities in polarized scattering.

A. FORTRAN codeMASCARAD

There are two variants of the code:MASCARAD_L.F and
MASCARAD_H.F dealing with leptonic and hadronic variable
respectively. The first code does not require any externa
braries. However, the histogramming byHBOOK can be op-
tionally included in the second variant. In this ca
MASCARAD_H.F requiresCERNLIB installed. In the externa
file one can choose the kinematical variables, the accurac
the calculation, and the value of the cut on inelasticity.
option to include kinematical cuts described in Sec. III C
available forMASCARAD_H.F. As output one has the value o
the Born cross section and the radiative correction fac
~with estimation of the statistical error! at chosen kinematica
points. The source code forMASCARAD can be obtained a
http://www.jlab.org/;aku/RC/

B. Numerical results: Leptonic variables

Both the spin averaged and spin dependent parts of
cross section (su andsp) can be presented as

sobs
u,p5~11d!s0

u,p1sR
u,p . ~82!

Both the factorized correctiond and the unfactorized cros
section coming from the bremsstrahlung process contrib

e

9-8
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to the cross section. When polarization asymmetries of
elastic processes are considered, the factorized part o
total RC tends to cancel but the unfactorized part can give
important contribution.

Absolute and relative corrections to the asymmetry can
defined as@see Eq.~82!#

DAi5Ai2Ai05
~11d!s0

p1sR
p

~11d!s0
u1sR

u 2
s0

p

s0
u , ~83!

D i5
Ai2Ai0

Ai0
5

dp2du

11d1du
, ~84!

where the index i runs over all considered cases:i
5L,T,qL,qT; du,p5sR

u,p/s0
u,p . Here the correctiond is

usually large because of contributions of leading logarithm
However, it exactly cancels in the numerator of the expr
sion for the correction to the asymmetry. This is the rea
why the correction to the cross section can be large, w
the correction to the asymmetry is relatively small.

The Born and observed asymmetries are presented in
2. The four lines correspond to the four considered ca
defined in Sec. II A. No cuts were used for the missing ma
As a result, hard-photon emission gives different contrib
tions to the spin averaged and spin dependent parts of
cross section due to its unfactorizing properties. For long
dinal asymmetriesdp.du and there are positive contribu
tions to the RC. The situation with transverse asymmetrie
opposite.

One can see that the transverse asymmetryAT with re-
spect to the beam direction has a large correction. This is
in contradiction with the other plots in this figure. The pola
ized parts of the cross sections in the cases (L,T) and
(qL,qT) are related to each other by some unitary trans
mation

FIG. 2. Born ~solid line! and observed~dashed line! asymme-
tries vsQ2. No kinematical cuts on inelasticity were used. Electr
beam energyE54 GeV.
11300
e
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e
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n
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es
s.
-
he
-
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r-

ds t
p

dQ2dv
5cosg

dsqt
p

dQ2dv
2sing

dsql
p

dQ2dv
. ~85!

Because of the dependence of the polarization vectors
inelasticity@see Eq.~19! and definitions there# this angleg is
a function ofv:

sin2g5
4M2l

lslq
, cosg5

SSx12M2Q2

Alslq

, ~86!

and only unintegrated cross sections are related as Eq.~85!.
This sine strongly suppresses the cross section of the
photon emission. Weighted with the sine and cosine,
cross sections in the right-hand side of Eq.~85! have the
same signs and similar magnitude and therefore compen
each other. As a result,dp!du and the asymmetryAT has a
large negative contribution.

In practice, the RC to the asymmetries can be essent
reduced by applying a cut on the missing mass or inelasti
which is also a measured quantity in elastic electron-pro
scattering. In Fig. 3 we show how these relative correctio
depend on the value of the cut on missing mass or inelas
ity.

C. Numerical results: Hadronic variables

As in the case of leptonic variables, let us define the re
tive RC to the ratio of recoil nucleon polarizationsPT /PL as

D5
PT /PL2PT

0/PL
0

PT
0/PL

0 . ~87!

In Fig. 4 this correction is given for several values of the c
on missing mass. It can be seen that the radiative correc
in this case is smaller than in the case of leptonic variab

In practice, however, the experimental situation can
more complicated than simply applying a single kinemati
cut on the missing mass. In past and future experime

FIG. 3. Relative RC to asymmetries defined in Eq.~84! vs value
of inelasticity cut forQ253 GeV2; E54 GeV.
9-9
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@1,20# at JLab on measuring the ratio of elastic form facto
of the proton, all the events appearing in detectors5 were
accepted for analysis. To calculate the RC in this situation
have to apply all cuts discussed in the previous section. T
I gives the results for the past@1# and future@20# experiments
~above and below the line!. As we can see the RC does n
exceed 1%.

V. DISCUSSION AND CONCLUSION

In this paper we applied the approach of Bardin a
Shumeiko@5# for calculation of the model independent r
diative correction of lowest order in processes of elas
electron-proton scattering. Current experiments on the p
cess measure different polarization observables such as
asymmetries in different combinations of polarizations
initial particles and the ratio of recoil proton polarization
allowing one to access the ratio of electromagnetic form f
tors of the proton. That is why special attention was paid
radiative corrections to the polarized parts of the cross s
tion.

The chosen method of calculation allowed us to obt
explicit formulas in the cases of so-called electron and h
ron variables. They correspond to the cases when the k
matics of the measured process is reconstructed from
momentum of the final electron and proton, respectively
was shown that, although the formulas for the Born case
exactly the same for both cases, all ingredients of the
calculation are different in these cases. The physical~or ki-
nematical! reason for this is the fact that in the first case t
radiating particle~electron! is measured, but in the secon

5Here we do not consider possible lost events in the detecto
other words, we take into account only geometrical accepta
However, the influence of apparatus acceptance also can be
into account in our approach by introducing some map of dev
acceptance toMASCARAD. There is a certain place in the code to d
it.

FIG. 4. Relative RC to the ratio of recoil proton polarizations
Q2 for three values of inelasticity cut.
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case it escapes unmeasured or is integrated over.
The explicit formulas for the lowest-order model indepe

dent radiative correction are exact up to the ultrarelativis
approximation which neglects the terms;m2/Q2. However,
this is not a limitation of the approach. These terms c
easily be restored if needed~for example, if the approach is
applied to muon scattering and accuracy of;mm

2 /Q2 is re-
quired!.

In contrast to the case of inclusive deep inelastic scat
ing, the integration here is left for numerical analysis. A
integrals are finite after using the procedure of covariant c
cellation of infrared divergences. This form of solution a
lows one to include acceptance effects in the integrand.
function of acceptance usually depends on the final an
and momenta, which can be expressed in terms of integra
variables. A proper way to do this is discussed in Sec. III

On the basis of the exact formulas, theFORTRAN package
MASCARAD was developed. It includes codes for both t
electron and hadron variable measurements. Applying
package to the radiative correction procedure allows one
include the model independent correction in the data anal
of current experiments~including polarization! of elastic
electron-nucleon scattering. Our numerical analysis sho
that radiative effects can be important especially in the ca
of transversely polarized targets. However, using kinemat
cuts such as a single cut on inelasticity or a cut on kinem
cal variables of the second~undetected! particle allows one
to reduce the effect considerably.

ACKNOWLEDGMENTS

We would like to acknowledge useful discussions with
Ilyichev. We thank our colleagues at Jefferson Lab for use
discussions. We thank the U. S. Department of Energy
support under contract DE-AC05-84ER40150. The work
N.M. was supported in addition by Rutgers Univers
through NSF grant PHY 9803860 and by the Ukraini
DFFD. A.A. acknowledges additional support through NS
Grant No. PHY-0098642.

In
e.
ken
e

TABLE I. The results for the RC to the asymmetryPT /PL .

E ~GeV! Q2 (GeV2) D ~%!

0.934 0.45–0.53 21.01
0.934 0.77–0.81 21.54
1.821 1.11–1.25 20.95
3.395 1.37–1.59 20.59
3.395 1.65–1.89 20.64
4.087 1.75–2.01 20.62
4.090 2.30–2.64 20.71
4.087 2.77–3.17 20.80
4.090 3.27–3.67 20.95

4.845 3.5 20.80
4.845 4.2 20.96
5.545 4.9 20.95
6.045 5.6 20.97
9-10
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APPENDIX

The functionsu i j are defined the same way as in Appe
dix B of Ref. @12# or with more details in Appendix B of Ref
@13#. However, there the formulas are integrated over
photon azimuthal angle@or equivalently overz; see Eq.~B7!
of Ref. @12## Below we define the procedure for writing th
explicit form of these functions in our case.

Formulas~B1!,~B2! of Ref. @12# or ~B.1!–~B.11! of Ref.
@13# can be applied unchanged for our case. Instead of
functionsF from ~B5! @12# or ~B.12! @13# we use the follow-
ing expressions:

Fd5
F

z1z2
, F115

F

z1
1

F

z2
, F265FS m2

z2
2

6
m2

z1
2 D ,

~A1!
ys
nd

n,

cl

e
on

. C

11300
-

e

e

where

F51/~2pAlQ!, FIR5F212Q2Fd ,

and

z15
1

Alq

@Q2Sp1t~SSx12M2Q2!22MAlz cosfk#,

z25
1

Alq

@Q2Sp1t~XSx22M2Q2!22MAlz cosfk#,

with

lz5~t2tmin!~tmax2t!~SXQ22M2Q42m2lq!.
~A2!
.
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