$Q^2(\theta_e)$ vs. $Q^2(\theta_p)$ comparison

Beam Energy calculations

RED: Electron Left

BLUE: Electron Right

Old Crunch

New Recrunch

Shifts still apparent...

New Crunch

Next slide will show why I conclude a TOF dependency in momentum calculations

Similar to above plots, this time: θ_e (measured) - $\theta_e(\theta_p)$ vs. θ_e Same variation over θ_e per TOF. Looks nothing like $\theta_e(p_e)$

Old Crunch

New Crunch

Again: θ_{e} (measured) - $\theta_{e}(\theta_{p})$ vs. θ_{e}

All values dropped.

Each TOF shows same variation in $\theta_{e}(\theta_{p})$

 θ_{e} vs θ_{p} with Theory (slightly worse agreement-probably due to drop)

• Major conclusion would be smoothness of all functions of θ .

New crunch

- Function of momentum show large fluctuations.
- No major difference between old and new values here.

• Much Smoother $\theta(p)$ graph as compared to electron above.

New Crunch

- Left sector θ and p look great from 40-67 degrees.
- Also reconstructs beam energy well.

