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INTRODUCTION

Long before QCD, meson theory was invented to describe thkeauforces|]1]. It was quickly realized that pion-
nucleon scattering data require a large coupling consks further consequence of this strong coupling, many
virtual mesons — Yukawas pions — were expected to be assdaith the nucleon. This was the birth of the pion
cloud, the main topic of this contribution. Heisenberg anent¥el developed a consistent approach to the strong
coupling limit, treating the mesons as classical fields &edinite nucleon size providing an UV cutoff. For an early
calculation of that period, see e.g. Rel. [2]. Many of theseas have survived until today, but now we know that
low-energy QCD is governed by the spontaneous breakdows ofiiral symmetry (for the light quarks) with the pion
taking over a special role as a (Pseudo-)Goldstone bosdhisltalk, | will be concerned with the pionic contribution
to the nucleon (hadron) structure, loosely called the “piud”. There is no doubt that is an important part of
nucleon structure, but the main questions to be addressed) & it possible to uniquely and unambiguously define
the contribution of the “pion cloud” to any given observabbnd ii) how could such a contribution be quantified?
There is lots of folklore about this issue, my goal is to be enprecise and show that while this concept provides
a nice intuitive picture, it can hardly be made quantitativthout resorting to uncontrolled models. But let us go
step by step. The first question can best be addressed inatinevirork of chiral perturbation theory (CHPT) (for a
recent review, seel|[3]). To be precise, consider a singleenncin baryon CHPT a nucleon typically emits a pion, this
energetically forbiddemN intermediate state lives for a short while and then the Eaaabsorbed by the nucleon, in
accordance with the uncertainty principle. This mecharsgsmsponsible for the venerable old idea of the “pion cloud”
of the nucleon, which in CHPT can be put on the firm ground ofiftekeoretical principles. This will be discussed
in more detail in the next section. As will be shown, such leoptributions are in general not scale-independent and
thus can not provide the required model-independent diefinit will then analyze the low-energy structure of the
nucleons’ electromagnetic form factors and show which wairgs are set by fundamental principles (like unitarity
and chiral symmetry) on their pionic contribution. This Milen allow for an — albeit model-dependent — extraction
of the longest range contribution to these fundamentalewrcktructure quantities. Throughout this talk, | eschew
models.

CHIRAL LOOPSASA REPRESENTATION OF THE PION CLOUD

Beyond tree level, any observable calculated in CHPT resadontributions from tree and loop graphs. Naively, these
loop diagrams qualify as the natural candidate for a pretédimition of the “pion cloud” of any given hadron. The
loop graphs not only generate the imaginary parts of thengert observables but are also — in most cases — divergent,
requiring regularization and renormalization. In CHPTe aisually chooses a mass—independentregularization schem
to avoid power divergences (there are, however, instanbeserother regulators are more appropriate or physically
intuitive. For a beautiful discussion of this and relatesliiss, see e.g. Refsl [4, 5]). The method of choice in CHPT is
dimensional regularization (DR), which introduces thdeda Varying this scale has no influence on any observable
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O (renormalization group invariance), g
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but this also means that it makes little sense to assign dqathyseaning to the separate contributions from the contact
terms and the loops. Physics, however, dictates the rangmalds appropriate for the process under consideration —
describing the pion vector radius (at one loop) by chirapkalone would necessitate a scale of about 1/2 TeV (as
stressed long ago by Leutwyler). In this case, the couplitigggo—meson generates the strength of the corresponding
one-loop counterterm that gives most of the pion radius —enoorthis below. The most intriguing aspects of chiral
loops are the so-calledhiral logarithms (chiral logs). In the chiral limit, the pion cloud becomesdpranged
and there is no more Yukawa facter exp(—Myr) to cut it off. This generates terms like Ibf,1/My, ..., that
is contributions that are non—analytic in the quark masSash statements can be applied to all hadrons that are
surrounded by a cloud of pions which by virtue of their smadlsses can move away very far from the object that
generates them. Stated differently, in QCD the approachedahiral limit is non—analytic in the quark masses and
the low—energy structure of QCD can therefore not be andlyzéerms of a simple Taylor expansion. The exchange
of the massless Goldstone bosons generates poles andastitegsat zero momentum transfer, such that the Taylor
series expansion in powers of the momenta fails. This is &gémphenomenon of theories that contain massless
particles — the Coulomb scattering amplitude due to phokehange is proportional te?/t, with t = (p — p)? the
momentum transfer squared between the two charged partladé¢ me return to the discussion of the chiral loops.
As stated before, most loops are divergent. In DR, all ora-tivergences are simple poles in(d — 4), whered is
the number of space-time dimensions. Consequently, thesemgdnces can be absorbed in the pertinent low-energy
constants (LECs) that accompany the corresponding localatgrs at that order in harmony with the underlying
symmetries. For a given LEG this amounts td; — L{*"+ B L(A) , where L~ 1/(d —4) andf is the corresponding
B—function. The renormalized and finité*" must be determined by a fit to data (or calculated eventualtygattice
QCD). Having determined the values of the LECs from expenin@ne is faced with the issue of trying to understand
these numbers. Not surprisingly, the higher mass state<Caf f@ave their imprint in the LECs. Consider again the
p-meson contribution to the vector radius of the pion. Expagthe p-propagator in powers daf M2, its first term is
a contact term of dimension four, with the correspondinddibEC Lo given bylLg = F2/2M2 ~ 7.2-1073, close to
the empirical valuég = 6.9-10 2 atA = M,. This so—called resonance saturation (pioneered in B¢f5.B]) holds
more generally for most LECs at one loop and is frequentlylusewo—loops calculations to estimate th# p®)
LECs (for a recent study on this issue, see [9]). Let us noaudis the the “pion cloud” of the nucleon in the context
of these considerations. Consider as an example the iso@irac radius of the proton [10] (for precise definitions,
see the next section). The first loop contributions appetuirat order in the chiral expansion, leading to
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rayY = <O.61— (0.47GeV) d(A) +0.47log I GeV) fm? | 2)

wheretf()\) is a dimension three pion—nucleon LEC that parameterize$rthcleon core” contribution. Compared
to the empirical valugry)? = 0.585 fn? [11] we note that several combinations(df,d(A)) pairs can reproduce the
empirical result, e.g.

(1 GeV,+0.06 GeV?), (0.943 Ge\[0.00 GeV?), (0.6 GeV,—0.46 GeV ?) . ©)

An important observation to make is that even the sign of twge” contribution to the radius can change within a
reasonable range typically used for the s@al@hysical intuition would tell us that the value for the cbing d should

be negative such that the nucleon core givessitivecontribution to the isovector Dirac radius, but field thetals

us that for (quite reasonable) regularization scales ahov€43 MeV this need not be the case. In essence, only the
sum of the core and the cloud contribution constitutes a ingéul quantity that should be discussed. This observation
holds for any observable - not just for the isovector Diratiwa discussed here.

NUCLEON ELECTROMAGNETIC FORM FACTORS: BASIC DEFINITIONS

To analyze the pion cloud contribution to the nucleons’ etenagnetic form factors in more detail, we must collect
some basic definitions. These form factors are defined by dbhkeon matrix element of the quark electromagnetic



current, )
(N(p")|ay* QaIN(p)) = U(p') V“Fl(q2)+§]0“"(p’—p)v|:2(q2) u(p) , (4)

with ¢° = (p' — p)? =t the invariant momentum transfer squar€tthe quark charge matrix, and the nucleon
massFi(q?) andF(g?) are the Dirac and the Pauli form factors, respectively.dvdlhg the conventions of [11], we
decompose the form factors into isoscalgrgnd isovector\() components,

R(0?) =R + R (0P), i=12, (5)

subject to the normalizatioRS(0) = FY (0) = 1/2, F,Y(0) = (kp & kn)/2 , With kp(kn) = 1.793(—1.913) the
anomalous magnetic moment of the proton (neutron). We Vgl ase the Sachs form factors,

2
GE(6P) = FL () + 5 5FH (@), Gla(@?) =Fi(e?) +Fh(a®) . =SV ®)

These are commonly referred to as the electric and the miagnetieon form factors. The slope of the form factors
atg? = 0 can be expressed in terms of a nucleon radius

__6 dR(@)
<r2>i|—|:_|—(o) dc?
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and analogously for the Sachs form factors. The analysiseohticleon electromagnetic form factors proceeds most
directly through the spectral representation given by

1 O'-I([Jz)duz )
Fll(qz):?T/(“I)zwv =12, 1=8V, (8)

in terms of the reaspectral functions g (u?) = ImF/'(u2). The corresponding thresholds are givenigy= 3Mg,

ug = 2Mp, with My the charged pion mass. Since the isovector spectral funidiomon—vanishing for smaller
momentum transfer (starting at the two—pion cut) than tbsdalar one (starting at the three—pion cut), the isovector
spectral functions plays a more important role in the qoesif the pionic contribution to the nucleon structure. More
precisely, let us consider the nucleon form factors in thecegike region. In the Breit—frame (where no energy is
transferred), any form factdt can be written as the Fourier—transform of a coordinateesgeasity,

F(a?) = [drdp(r), ©

with g the three—-momentum transfer. In particular, comparisdh #¢. [8) allows us to express the dengify) in

terms of the spectral function
e Hr

1 /® 2 2
PO = 42 [, 0 0) (10)
Note that for the electric and the magnetic Sachs form fagtgn is nothing but the charge and the magnetization
density, respectively. For the Dirac and Pauli form factétg. [10) should be considered as a formal definition.
This equation expresses the density as a linear combinatidtkawa distributions, each of mags The lightest
mass hadron is the pion, and from Eg.](10) it is evident thahpiare responsible for the long-range part of the
electromagnetic structure of the nucleon. This contrduts commonly called the “pion cloud” of the nucleon and
in fact this long—range lowg? contribution to the nucleon form factors can be directlyidt from unitarity or be
calculated on the basis of chiral perturbation theory, asutised next.

SPECTRAL FUNCTIONSAND THEIR LOW-ENERGY CONSTRAINTS

The spectral functions defined in Ef] (8) are the central tifiEsin the dispersion-theoretical approach. They can
in principle be constructed from experimental data. In fica¢this program can only be carried out for the lightest
two-particle intermediate states. Higher mass contrimstiare usually parameterized in terms of vector meson poles



FIGURE 1. Two—pion contribution to the isovector nucleon form fastodn the left side, the exact representation based on
unitarity is shown, whereas the triangle diagram on thetsgle leads to the strong enhancement of the isovectorrap@gictions
close to threshold. Also shown is the domingntmeson contribution. The solid, dashed, wiggly and douinles| represent
nucleons, pions, photons and therespectively.

For the discussion of the pion cloud, only the lightest méssgest range) contributions to the spectral functions are
of relevance. These will be discussed next.

I sovector case: Let us now evaluate the two—pion contribution in a modelepehdent way and draw some conclu-
sions on the spatial extent of the pion cloud from that (seetixt section). As pointed out long ago![12] and further
elaborated on in Ref. [13], unitarity allows us to determntimeisovector spectral functions from threshold up to masse
of about 1 GeV in terms of the pion charge form fada(t) and the P-waveriNN partial waves, see Figl 1. We use
here the form
V)= B RO, MmO = L F2I (1) (11)

ImGE()_m\/t—|7T( + ) M _\/Z n — )
whereq = \/t/4—M2. The functionsl. (t) are related to the-channel P-wavaN partial wavesf (t) via f1(t) =
Fr(t)J.(t) in the conventional isospin decomposition, with the tatadavalues of thd, (t) from [14]. For the pion
charge form factoF; we use the latest experimental data from CMD-2 [15], KLOE][B&d SND [17]. We stress
that the representation of Eq._{11) gives thect isovector spectral functiofisr 4M2 <t < 16M2 but in practice
holds up tot ~ 50M2. It has two distinct features. First, as already pointedioJtL2], it contains the important
contribution of thep—meson (see Fid.] 1) with its peak tat- 30M2. Second, on the left shoulder of tigg the
isovector spectral functions display a very pronouncedaeobment close to the two—pion threshold, as shown in
Fig.[2 (taken from Ref.[[18]). This is due to the logarithmingularity on the second Riemann sheet located at
te = 4M2 — M%/m? = 3.98M2, very close to the threshold. This pole comes from the ptigieof the nucleon Born
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FIGURE 2. The two-pion spectral function using the new high statistiata for the pion form factor [15,/16./17]. The spectral
functions weighted by 2 are shown foiGg (solid line) andGy (dash-dotted line). The previous results by Hohler etl&] [1
(without p-w mixing) are shown for comparison by the gray/green line® fidd solid line indicates the-meson contribution to
Im Gy with a widthl", = 150 MeV.
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FIGURE 3. Left panel: Two—-loop diagrams contributing to the imagynparts of the isoscalar electromagnetic nucleon form
factors. The solid, dashed and wiggly lines denote nuclggioss and photons, respectively. Right panel: Spectsitidution of
the isoscalar electric and magnetic nucleon form factorigiwed with 3/t2 in the heavy nucleon limit. Shown are 8§ (t)/t?

(upper line) and InG2(t) /t? (lower line).

graphs, or in modern language, from the triangle diagramdggpicted in Fig. 1L (middle graph). If one were to neglect
this important unitarity correction, one would severelylarestimate the nucleon isovector radii [19]. In fact, [ely

the same effectis obtained at leading one—loop accuradyrial @erturbation theory, as discussed firstin [20, 21]sTh
topic was further elaborated on in the framework of heavy®aiICHPT [22| 23] and in a covariant calculation based
on infrared regularization [24] (see also[25]). It is imfzot to note that there is a strict one-to-one corresporelenc
between this unitarity correction and the field-theordiyodefined one-pion loop — contrary to what is claimed in de
Jager’s contribution to this workshap [26]. Stated diffehg the most important two—pion contribution to the nuaeie
form factors can be determined by using either unitarity HIPT (in the latter case, of course, thecontribution is
not included). Clearly, this is an important input into tpestral functions used in the on-going dispersive anabyfsis
the nucleon form factors by the Bonn-Mainz group |11, 27,2%8,(see also the work by Dubnicka and collaborators
as reviewed in Ref._[30]).

Isoscalar case: In the isoscalar electromagnetic channel, it was beliebet ot proven) that the pertinent spectral
functions rise smoothly from the three—pion threshold eashmeson peak, i.e. that there is no pronounced effect from
the three—pion cut on the left wing of theresonance (which also has a much smaller width thaptimeeson). Chiral
perturbation theory was used to settle this issue, seeR3f An investigation of the isoscalar spectral functioasdd

on pion scattering data and dispersion theory as done fasalrector spectral functions seems not to be feasible at the
moment since it requires the full dispersion—theoretinalysis of the three-body procesgdd — rriN (or of the data

on NN — 3m). Consider now the CHPT analysis. The imaginary parts oisbscalar electromagnetic form factors
open at the three—pion threshdid= 9M2. The leading two—loop diagrams to the three—pion cut coution are
depicted in the left panel of Fig] 3. A compact form of the &alar spectral functions can be given in the limit- .
Furthermore, these results represent the genuine leadiey contributions with all higher order effects (startisig
orderg? in the chiral expansion) switched off,

ImGE(t) 3gAt // danday |l1]]l2| V1 — 22 arccog—z (12)

1m)5F2

gam

ImG,\S,,(t):m

{L(t) [3@ — 10tM2 + 2Mj + g& (3t — 2tM3 — 2|v|ﬁ)]

+W(t) {t3+ 252M; — 3%°M2 — 126%2M3 + 65tM2 — 50/EM3S — 27ME

+0a (5% + 105 2Mp; — 1472M2 + 36t%2M3 + 27AM: — 58vEIM3 — 135|VI§)} } , (13)
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_ME VMgt /E—2VEM— 3M2 VMg 5
L(t) = 2t3/2| 2M,; ,W(t)—W\/t—z\/t‘Mn—:sMn, (14)



andl,, are the two independent pion momenta of the three-partittrnediate state (for precise definitions, see
Ref. [22]). Here,ga is the nucleon axial-vector coupling afg the pion decay constant. Note that in the infinite
nucleon mass limit In&2(t) comes solely from graph (c) in Figl 3 and quite astonishirgig can evaluate all
integrals in closed form for IG5, (t). The behavior near thresholgl= 9M2 of the imaginary parts for finite pion
mass is

IMGE(t) ~ (VE—3Mp)3,  ImGy(t) ~ (VE—3Mp)*2 (15)

which corresponds to a stronger growth than pure phase spaisefeature indicates (as in the isovector case) that in
the heavy nucleon mass limit — c normal and anomalous thresholds coincide. In order to firdetsingularities
for finite nucleon masm an investigation of the corresponding Landau equationségssary [31]. By using standard
techniques we are able to find (at least) one anomalous tiiceshdiagrams (a) and (b) at

\/E_Mn<\/4—M,ZT/mZ+ \/1—M,%/n12> : tc = 8.90M7, (16)

which is very near to the (normal) threshdlgd= 9M2 and indeed coalesces with in the infinite nucleon mass
limit. We note that diagram (d) does not possess this anamaloeshold. = 8.90M2, but only the normal one. We
do not want to go here deeper into the rather complicated/sisabf the full singularity structure of all two-loop
diagrams but are mainly interested in the magnitude of tbecelar electromagnetic imaginary parts. The resulting
spectral distributions again weighted witlit are shown in the right panel of Figl 3. They show a smooth st a
are two orders of magnitude smaller than the correspondmgeictor ones. This smallness justifies the procedure in
the dispersion—theoretical analysis likelinl[11, 127 ,/2§,t8%escribe the isoscalar spectral functions solely byarec
meson poles starting with the-meson in the low—energy region. Nevertheless, it may béhmdnile to include these
calculated isoscalar imaginary parts in future dispersioalyses. We finally remark that I@EM (t)/t* which have

the same asymptotic behavior (for ) as ImG\,é’,\,I (t)/t? (considering only the leading® contribution) do still not

show any strong peak below te-resonance. IGE(t)/t* is monotonically increasing frog = 9M2 to t = 30M2

and ImGg, (t) /t* develops some plateau between20 and 30M2. This observation is a further indication that there is
indeed no enhancement of the isoscalar electromagnetitrapfeinction near threshold. Even though the isoscaldr an
isovector electromagnetic form factors behave formallywimilar concerning the existence of anomalous threshold
tc very close to the normal thresholts the influence of these on the physical spectral functiomattser different

for the two cases. Only in the isovector case a strong enharuEs visible. This is due to the different phase space
factors, which arét —t)%/? and(t —tp)* for the isovector and isoscalar case, respectively. ledatise, the anomalous
threshold at. = 8.9M,2T is thus effectively masked.

THE PION CLOUD ASSEEN IN THE ISOVECTOR NUCLEON FORM FACTORS

To get a semi-quantitative idea about the size of the pionctia the nucleon electromagnetic form factors, let us
separate the (uncorrelated) pion contribution fromgheontribution in the isovector spectral functions [32]r Euat
we decompose the isovector spectral functions as

ImGY (t) = Im G/#(t) +Im G/°(t), 1 =E,M, (17)

and analogously for Inhffz(t). Using Eq. [ID), we can then calculate the pion cloud coutioin to the charge and
magnetization density in the Breit—frame. Thecontribution in Eq.[(1I7) can be well represented by a BWiigner
form with a running width[[23],

b MS\/fFP(t)

Vo) _
Im &) = Mz ra

| =E,M, (18)

with the massM, = 769.3MeV and the width,(t) = g2(t — 4M2)%/2/(48nt), where the couplingy = 6.03 is
determined from the empirical vaIU'ep(Mg) = 1502 MeV, and the parametely can be adjusted to the height
of the resonance peak. The corresponding expressionsefamtginary parts of the Dirac and Pauli form factors can
be obtained from Eg[{6). It is clear that the separationtimeo(uncorrelated) pion contribution and fxecontribution
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FIGURE 4. The densities of charge and magnetization due to the piamicleft panel: 4r2p(r) for the isovector Pauli (upper
band) and Dirac (lower band) form factors. Right panei:%p(r) for the isovector magnetic (upper band) and electric (Idvesrd)
Sachs form factors.

introduces some model-dependence. To get an idea abobtethretical error induced by this procedure, we perform
the separation in three different ways:

(a) The two—pion contribution can be directly obtained fritva two—loop chiral perturbation theory calculation of
[23]. Together with theo—contribution of Eq.[(TB), this calculation gives a very datescription of the empirical
spectral functions. Note that on the right side of thethe two—loop representation is slightly larger than the
empirical one, so that we expect to obtain an upper bound Ipyagfimg this procedure. We will use the analytical
formulae given inl[23] where the low—energy constentvas readjusted to avoid double counting of fhe
contribution (se€ [33]).

(b) A lower bound on the two—pion contribution can be obtdibg settingF-(t) = 1 in Eqg. [I1). This prescription
does not only remove the—pole but also some small uncorrelated two—pion contidnstcontained in the pion
form factor.

(c) To obtain the two—pion contribution, we can also sulitkag (18) from the spectral function E@.{11) including
the full pion form factor. The parametelbg = 1.512 andby = 5.114 are determined such that the two—pion
contribution at thep—resonance matches the two—loop chiral perturbation yhesdculation of [23]. Variation of
theb, around these values gives an additional error estimate flat a similar procedure was performed.in [34]
to extract scalar meson properties from the scalar pion faotor.

Using these three methods, we obtain a fairly good handl@ethieoretical accuracy of the non-resonant two—pion
contribution. We can now work out the density distributidthe two—pion contribution to the nucleon electromagnetic
form factors. Before showing the results, some remarks rararder. As stated above, the spectral functions are
determined by unitarity (or chiral perturbation theory)yonp to some maximum value df denotedyax in the
following. Thus, we have simply set the spectral functiamshie integral Eq.[{10) to zero for momentum transfers
beyond the valugémax = 40M2. In Fig.[4, we show the resulting densities for the isoveétom factors weighted
with 4rr2. The contribution of the “pion cloud” to the total charge cagmetic moment is then simply obtained by
integration over. The bands reflect the theoretical uncertainty in the séipara=or all form factors, the lower and
upper bounds are given by methods (b) and (a), respectiMetiod (c) generally yields a result between these bounds,
except for the Dirac form factor where it gives the upper burhe weighted densities for the isovector Dirac and
Pauli form factors are shown in the left panel of . 4. Wetha¢these charge distributions show a pronounced peak
around ~ 0.3fm, quite consistent with earlier determinations (see[8%/36]), and fall off smoothly with increasing
distance. In the right panel of Figl 4, we show the densitiggin weighted with #r?) for the electric and magnetic
Sachs form factors which come out very similar to the casé@®fiirac and Pauli form factors. In comparison with
Ref. [37], we generally obtain much smaller pion cloud efeat distances beyond 1 fm, e.g., by a factor 3a(r)

atr = 1.5 fm. We have also studied the sensitivity of our results eodit—offtax. While this may increase the value
of the “pion cloud” contribution, it leaves the position bt maximum essentially unchanged. However, it is obvious
from Eq. [10) that masses beyond 0.5 GeV and correspondiafi-gtistance phenomena € 0.4 fm) should not

be related to the pion cloud of the nucleon. Finally, we shoevdorresponding two—pion contribution to the charges



TABLE 1. Two—pion contribution to charges and radii (in 4yrfor the various nucleon form
factors. The radii are normalized to the physical chargéswaagnetic moments.

FY'(0) RO GO  Guo) (3 (r)y (r*)E (r)%
007..008 04.10 01.02 04.10 01.02 02.03 02.03 02.03

and radii for the various nucleon form factors in Table 1. €hatribution of the pion cloud to the isovector electric
(magnetic) charge is 20% (10%) in the model of Ref| [37]. Thisonsistent with our range of values for the electric
charge but a factor of 1.5 smaller than our lower bound fomtlagnetic one, see Taljle 1. Furthermore, note that the
pion cloud gives only a fraction of all form factors at zerommentum transfer. Normalized to the contribution of the
pion cloud, the corresponding radii are of the order of 1 fmthle model of|[37], these radii are considerably larger,
of the order of 1.5 fm. Note that if one shifts all the strengtlthe corresponding spectral functions to threshold, one
obtains an upper limitmax = 1/3/2My* ~ 1.7 fm, assuming that the spectral functions are positive iefin

WHAT CAN WE CONCLUDE?

Let me summarize the pertinent conclusions of this talk:

i) Chiral perturbation theory is the natural framework tedstigate the role of pionic contributions to hadron
(nucleon) structure. Nucleon observables receive carttabs from pion loops, the “pion cloud*.

i) In general at any given order in the chiral expansion bed/tiee level, S-matrix elements and transition currents
receive contributions from pion loops and local shortatise operators. Both these contributions are in general
scale-dependent and thus it is possible to shuffle stremgth dne to the other. Consequently, an unambiguous
extraction of the pion cloud contribution is not possible.

iii) The spectral functions that parameterize the physfdh®@isovector and isoscalar nucleon electromagnetic form
factors are dominated for low masses by two- and three-pichanges, respectively. The two-pion contribution
can be exactly worked out up to approximately 1 GeV by unitdri terms of TN scattering amplitudes and
the pion vector form factor. The CHPT representation shiressame analytic properties, namely the strong
enhancement on the left shoulder of hdue to an anomalous threshold on the second sheet closegtbytbieal
threshold. A similar anomalous threshold effect in thedster spectral functions is washed out by phase space
factors. These constraints must be included in any serioalysis of the nucleon form factors.

iv) A model-dependent separation of the correlated fromutierrelated two-pion exchange allows one to analyze
the spatial extent of this longest range contribution toileector form factors. It is much more confined in
space than in the analysis of Ref.|[[37].

v) Concerning low momentum transfer bump-dip structurethianucleon form factors for lov@?, one should
first realize that such structures have already been pré@senbst dispersive analyses in the magnetic form
factors. The novel structure B2 (Q?) proposed in Ref. [37] can only be explained with spectratfioms that
contain additional light mass poles violating the striegifrom unitarity and chiral symmetry as discussed above.
According to the newest dispersive analysis [29], this bwdigpstructure lies completely within the one sigma
uncertainty and it requires an additional isoscalar/istmepole close to thev/three-pion threshold. For a more
detailed discussion on this topic, | refer to Ref. [38].
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