Studying the Nucleon Structure with Spin

Overview BLAST Experiment Nucleon Form Factors Deuterium

Nucleon Elastic Form Factors

Fundamental for understanding nucleon structure in nonperturbative regime.

Parameterises coherent scattering without exciting internal degrees of freedom with single photon exchange.

• for point-like, spin=1/2 particles QED gives:

$$\sigma_{Dirac} = \sigma_{Mott} \left(1 + 2\tau \tan^2 \frac{\theta}{2} \right)$$

• for extended objects, like nucleons, require form factors:

$$\sigma_{lab} = \sigma_{Mott} \left[\left(\frac{G_E^{N2} + \tau G_M^{N2}}{1 + \tau} \right) + 2\tau G_M^{N2} \tan^2 \frac{\theta}{2} \right]$$

• traditionally measure using Rosenbluth technique

$$\sigma_{Rosenbluth} = \sigma_{Mott} \left(A^N(Q^2) + 2\tau B^N(Q^2) \tan^2 \frac{\theta}{2} \right)$$

Nucleon Elastic Form Factors

Parameterised as dipole distribution in momentum space.

- corresponds to a exponential distribution in position space
- single dipole describes G^{p}_{E} , G^{p}_{M} , and G^{n}_{M}
- G^{n}_{E} is the exception, order of magnitude smaller
 - traditionally hard to measure, small, no convenient neutron targets

But dipole not perfect, does not describe details Q²<1 (GeV/c)² Friedrich and Walcher have proposed a new parameterisation:

$$G^{N}(Q^{2}) = G^{N}_{S}(Q^{2}) + \alpha_{B}Q^{2}G^{N}_{B}(Q^{2})$$

- S- smooth term of two dipoles
- B bump part of two gaussians
- fit to a collection of the world's data

Friedrich and Walcher Fit to G^pE

Friedrich and Walcher Fit to G^pE

Friedrich and Walcher Fit to G^pM

Friedrich and Walcher Fit to G^pM

D.K. Hasell

Discrepancy in Ratio $\mu_p G^p E/G^p M$

6

But details of bump not only interesting topic with nucleon form factors.

Recent results from JLAB

 polarisation transfer measurements disagree with Rosenbluth separation

Possible explanation by two photon effects

- calls into question present interpretation of data and understanding of nucleon form factors
- requires a re-interpretation of all Rosenbluth data
- more later

Bates Large Acceptance Spectrometer Toroid Systematic study of spin-dependent electromagnetic interaction

Longitudinally polarised electrons MIT-Bates storage ring

• 850 MeV, 200 mA (typical), 65% polarisation (typical)

Highly polarised, internal gas target of isotopically pure H or D

• 6×10¹³ atoms/cm², 80% polarisation (typical)

Symmetric, large acceptance, general purpose detector

• Simultaneous detection of e^{\pm} , π^{\pm} , p, n, d

MIT-Bates Linear Accelerator Center

- strained GaAs0.95P0.05
- 70% polarisation typical
- 1/2 wave plate to flip helicity each run

500 MeV Linac with recirculator

- polarised electrons up to 1 GeV
 North and South Expt. Halls
 - SAMPLE north hall
 - OOPS/BLAST south hall

South Hall Ring

- stack to 225 mA typical
- 30 minute lifetime
- 65 % polarisation typical
- Siberian snake maintains longitudinal spin at target

South Hall Ring

Compton Polarimeter

9

Monitor beam polarisation in ring

- 5 W laser, 532 nm, circularly polarised incident on oncoming electron beam
- Backscattered photons detected in CsI
- Laser helicity flipped in Pockels cell
- Asymmetry yields beam polarisation
- Chopper wheel allows simultaneous measure of background
- Typical beam polarisation 65 %

• Systematic uncertainty <3%

Internal, Polarised Gas Target

Atomic Beam Source

- series of focusing magnets and RF transition units populate and transport the desired spin state to the target cell
- target cell thin walled, open ended tube, 60 cm long, Ø15 mm
- isotopically pure ¹H or ²H
- vector polarised ¹H
- vector and tensor polarised ²H
- randomly change spin state every 5' during run
- target density 6×10¹³ atoms/cm²
- vector polarisation 80 % typical
- tensor polarisation 68 % typical

• 8 sector toroid magnet

- minimise effect on beam and target polarisation
- 3.8 kG maximum field

• two horizontal sectors instrumented

- 3 wire chambers / sector
 - single gas volume
- 2 superlayers / chamber
 - +/- 10° stereo
- 3 sense layers / superlayer
- total 18 layers of tracking
- momentum analysis
- scattering angles
- event vertex
- particle charge

Aerogel Cerenkov

• pion / electron separation

thick scintillators for neutron detectorasymmetric favouring right sector

- left-right symmetric
- 20°- 80° θ , ±15° ϕ
- $0.1 < Q^2 < 0.8 (GeV/c)^2$
- e^{\pm} , p, n, d, π^{\pm}

BLAST Detector Components

BLAST Detector Components

Event Selection

Target spin angle

- 32° (2004) / 45° (2005)
- horizontal into the left sector

Target spin angle

- 32° (2004) / 45° (2005)
- horizontal into the left sector

Electron scatters to left sector

- $q \approx$ perpendicular to target spin
- $\theta^* \approx 90^\circ$
- "spin perpendicular" kinematics

Target spin angle

- 32° (2004) / 45° (2005)
- horizontal into the left sector

Electron scatters to right sector

- $q \approx$ parallel to target spin
- $\theta^* \approx 0^\circ$
- "spin parallel" kinematics

e⁻

Target spin angle

- 32° (2004) / 45° (2005)
- horizontal into the left sector

Electron scatters to left sector

- $q \approx$ perpendicular to target spin
- $\theta^* \approx 90^\circ$
- "spin perpendicular" kinematics

Electron scatters to right sector

- $q \approx$ parallel to target spin
- $\theta^* \approx 0^\circ$
- "spin parallel" kinematics

BLAST Physics

Polarised Hydrogen

 $T_{20}: G^d_Q$ D.K. Hasell

16

 A^{T}_{d} : L=2

photodisint. ${}^{1}S_{0}$

Elastic Scattering from Hydrogen

With polarised beam and target can measure asymmetries

$$A_{exp} = P_b P_t \frac{-2\tau v_{T'} \cos \theta^* G_M^{p-2} + 2\sqrt{2\tau(1+\tau)} v_{TL'} \sin \theta^* \cos \phi^* G_M^p G_E^p}{(1+\tau) v_l G_E^{p-2} + 2\tau v_T G_M^{p-2}}$$

• note some terms vanish in perpendicular or parallel kinematics

With symmetric detector can form ratio of left/right asymmetries

$$R_{A} = \frac{A_{L}}{A_{R}} = \frac{z_{L}^{*} - x_{L}^{*}G_{E}^{p}/G_{M}^{P}}{z_{R}^{*} - x_{R}^{*}G_{E}^{p}/G_{M}^{P}}$$

- beam and target polarisations cancel
- all that remains is kinematic terms

Ratio of Proton Elastic Form Factors

Impact of BLAST Results on World Data

Proton elastic form factors

- G^p_E and G^p_M
- divided by dipole
- collection of unpolarised data

Ph.D. Thesis C. Crawford and A. Sindile

Impact of BLAST Results on World Data

Proton elastic form factors

- G^p_E and G^p_M
- divided by dipole
- collection of unpolarised data

World data combined

- averaged and rebinned
- over BLAST range

Ph.D. Thesis C. Crawford and A. Sindile

Impact of BLAST Results on World Data

Proton elastic form factors

- G^p_E and G^p_M
- divided by dipole
- collection of unpolarised data

World data combined

- averaged and rebinned
- over BLAST range

Constraining with BLAST • uncertainties reduced factor 2

Ph.D. Thesis C. Crawford and A. Sindile

BLAST Data with Friedrich and Walcher

BLAST Data with Friedrich and Walcher

D.K. Hasell

Cusco 12/6/2007

Elastic Electron - Deuteron Scattering Deuteron spin S = 1

- three form factors G^{d}_{C} , G^{d}_{M} , and G^{d}_{Q}
- G^d_Q arises from tensor force, D-wave
- normalisation $G^{d}_{Q}(0)=M^{2}_{d}Q_{d}$

Unpolarised elastic cross section - insufficient

$$A(Q^{2}) = G_{C}^{d\ 2} + \frac{8}{9}\eta^{2}G_{Q}^{d\ 2} + \frac{2}{3}\eta G_{M}^{d\ 2}$$

$$B(Q^{2}) = \frac{4}{3}\eta(1+\eta)G_{M}^{d-2}; \qquad \eta = Q^{2}/(4M_{d}^{2})$$

Need additional measurement - tensor asymmetry

$$T_{20} = -\frac{1}{\sqrt{2}S} \left[\frac{8}{3} \eta G_C G_Q + \frac{8}{9} \eta^2 G_Q^2 + \frac{1}{3} \eta [1 + 2(1+\eta) \tan^2(\frac{\theta}{2}) G_M^2] \right]$$

D.K. Hasell

Reduced T₂₀

D.K. Hasell

D.K. Hasell

Cusco 12/6/2007

Te₁₀ and Te₁₁ and G^d_M

Quasi-Elastic Scattering from Deuterium

Deuteron readily breaks up

- $e + d \rightarrow e' + p + n$
- electro-disintegration

Spin-dependent d(e,e'N) cross section can be written as:

$$S(h, P_Z, P_{ZZ}) = S_0 \left[1 + P_Z A_d^V + P_{ZZ} A_d^T + h(A_e + P_Z A_{ed}^V + P_{ZZ} A_{ed}^T) \right]$$

In the Born approximation $A_d^V = A_e = A_{ed}^T = 0$
Yielding:
$$S(h, P_Z, P_{ZZ}) = S_0 \left[1 + P_{ZZ} A_d^T + hP_Z A_{ed}^V \right]$$
$$= 0 \text{ for S state}$$

Extracting Gⁿ_E from A^V_{ed}

$$A_{ed}^{V} = \frac{aG_{M}^{n} c\cos\theta^{*} + bG_{E}^{n}G_{M}^{n}\sin\theta^{*}\cos\phi^{*}}{cG_{E}^{n} cG_{M}^{n} cG_{M}^{n}} \approx a\cos\theta^{*} + b\frac{G_{E}^{n}}{G_{M}^{n}}\sin\theta^{*}\cos\phi^{*}$$

Beam-Target vector asymmetry gives Gⁿ_E assuming Gⁿ_M known

- full Monte Carlo simulation
- deuteron electro-disintegration by H. Arenhovel
- account for FSI, RC, IC, MEC
- "spin-perpendicular" kinematics shows largest effect

Cusco 12/6/2007

Gⁿ_E from **BLAST**

Neutron Charge Density

D.K. Hasell

Cusco 12/6/2007

Proton Charge Density

D.K. Hasell

Cusco 12/6/2007

 $\mathbf{G}^{\mathbf{n}}_{\mathbf{M}}$

D.K. Hasell

Deuteron Wavefunction

D state normally 4-6 %

- but beyond 0.3 GeV dominant
- provides a regime to study tensor force
- in D state nucleon spins flip

Quasi-Elastic e'p Scattering from Deuterium

Ph.D. Thesis A. Maschinot and A. DeGrush

Quasi-Elastic e'p Scattering from Deuterium

Two Photon Effect

Interference in e⁻p/e⁺p Cross Sections

BLAST@DORIS

BLAST Collaboration

