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ABSTRACT

Inclusive Scattering of Polarized Electrons from Polarized

Protons in the ∆ - Excitation Region with BLAST

by

Octavian Florin Filoti
University of New Hampshire, April, 2007

Inclusive scattering of polarized electrons from polarized protons has been studied

using the BLAST detector at MIT-Bates Linear Accelerator Center. The Bates Large

Acceptance Spectrometer Toroid (BLAST) is a detector designed to study in a compre-

hensive and precise way the spin-dependent electromagnetic response in one and few-body

systems over a large kinematic range. It has been used to measure spin-dependent scat-

tering from the elastic to the nucleon resonance region for hydrogen and deuterium using

a longitudinally polarized electron beam at a beam energy of 850 MeV stored in the MIT-

Bates South Hall Ring, and polarized internal gas targets of hydrogen and deuterium.

There are several reasons for studying the inclusive ~p(~e, e′) reaction: first, since all pion

production models predict its observables, this is a stringent test for these models; second,

due to detector acceptance confinements, inclusive scattering provides a higher statistical

accuracy than exclusive scattering, where a hadron is measured in coincidence with the

scattered electron, and additional systematic uncertainties from the exclusive reaction,

due to the energy and angular resolution of the hadron detector, are avoided as well;

third, the double-polarized scattering with BLAST over a range of momentum transfer

Q2 = [0.08, 0.38] GeV 2 provides unique, accurate data to check these models.

xxviii



CHAPTER 1

Introduction

1.1 History

One of the major quests of the contemporary nuclear physics is the search for a com-

plete understanding of the fundamental interactions between elementary particles. In

order of decreasing strength, the four fundamental forces of nature are strong, electro-

magnetic, weak and gravity [24, 25, 26]. The gravitational force is important for the

existence of stars, galaxies, and planetary systems, but, up to date, it seems to avoid a

unified description within a quantum field theoretical framework. The electromagnetic

force appears inside atoms and is caused by the electric charge of its constituents. The

weak force manifests itself in nuclear β-decay. The strong force binds quarks to form

protons and neutrons. The last three lead to the corresponding fundamental interactions

between the elementary particles.

A big achievement was the unification of the electromagnetic and weak forces in the

1960s and 1970s in a single, electroweak theory due to Weinberg [27] and Salam [28]. One

of the biggest success of the theoretical description of elementary particles is based on the

predictive power of the electroweak theory, and in particular of Quantum Electrodynamics

(QED), due to the smallness of electromagnetic fine structure constant α ≡ e2/~c ≈ 1/137,

which allows for a perturbative expansion of the theory in powers of α. This proved very

accurate in predicting the experimental data. Unfortunately, this technique does not en-

tirely work in the case of Quantum Chromodynamics (QCD), the theory that drives the
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strong force. At sufficiently high energies, QCD exhibits a perturbative behaviour similar

to QED, where the color coupling constant, αs of QCD becomes very small. Therefore, at

high energy, quarks, which are confined by the strong color force, can be treated using the

perturbation theory, denoted by pQCD. In contrast to the electromagnetic force, the color

coupling becomes large at low energies, hence ”confining” the quarks into the observed

particles. This fact prevents QCD from being investigated using perturbation theory. A

good description of QCD in this regime can be achieved through Wilson’s lattice gauge

theory [29]. He presented a method of quantizing a gauge field theory such as QCD on

a discrete four dimensional lattice in Euclidian space-time, while preserving exact gauge

invariance. In this way, the extraction of qualitative non-perturbative QCD becomes pos-

sible. However, due to enormous computational power needed by lattice QCD, effective

quark models of hadrons have been developed [30, 31], which are aimed at predicting the

properties of hadrons by reducing the strong self-interacting multi-quark and gluon sys-

tems to an effective two- or three-quark system. Since these two approaches are far from

being able to offer practical solutions at low and intermediate energies, ”effective methods”

that describe the dynamical structure of these processes have been created. These effec-

tive methods account for the inner structure of the baryons by introducing explicit baryon

resonance states, whose properties are then extracted by comparison with experimental

observables. The idea of the effective models is to account for the symmetries of the fun-

damental theory (QCD) by including only effective degrees of freedom instead of quarks.

These effective degrees of freedom are modeled using the properties of known baryons and

mesons (which exist as bound quark states). This gives more perceptive insight on the

dynamics of the reaction and makes the interpretation of the results somewhat easier.

In the framework of these effective models of hadrons, the nucleon and the pion are

among the most important particles. The pion is responsible for the long range nucleon-

nucleon interactions and plays an important role in mediating the nuclear force. The

general properties of pions are listed in Table 1.1.
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IG JPC mass [MeV] lifetime [s] Decay modes branching ratio [%]

π± 1− 0− 139.57 2.60 · 10−8 µνµ 100

π0 1− 0−+ 134.98 8.40 · 10−17 γγ 98.8

Table 1.1: Basic properties of pions

The pion production reactions are a very useful tool in investigating the structure

of nucleons and nuclei. The theory of pion production on the nucleon was published in

the 1950s. Kroll and Ruderman [32] derived the model independent predictions of the

observables in the threshold region, called the low energy theorems (LET), by applying

gauge and Lorentz invariance to the reaction γ + N → π + N . The general formalism,

though, was developed by Chew et al. [33] (CGLN amplitudes). Fubini et al. [34], in 1965,

extended the predictions of the LET by including the hypothesis of a partially conserved

axial current (PCAC). They succeeded in describing the threshold amplitudes as a power

series in the ratio mπ/mN up to terms of order (mπ/mN )2. In 1967, Berends et al.[35]

analyzed the existing data at energies up to 500 MeV in the laboratory frame, in terms of

multipole decomposition, coupled with theoretical dispersion calculations and presented

tables of the various multipole amplitudes contributing in this energy region as a function

of photon energy. In 1969, Peccei [36] introduced for the first time an effective chiral

Lagrangian for single pion photo-production1 and explicitly included a phenomenological

πN∆ interaction.

The main difference in the various effective Lagrangian approaches is the treatment

of the ∆ resonance. In 1977, Blomq̌ist and Laget [37] introduced a very simple effective

pion production model from the nucleon, which provided a very good description of the

data up to the first resonance region. Their model could be easily incorporated in nuclear

physics applications [38, 39]. A different approach was proposed by Nozawa et al. in

1pion photo-production occurs at Q2 = 0, while electro-production takes place at Q2 6= 0.
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1990, namely, a dynamical model that takes into account off-shell effects in the final

πN interaction, but, in order to obtain a good fit of the data, they introduced a cut-off

parameter to multiply the Born cross section with, hence a strong dependence on this

cutoff was obtained. Sato and Lee [40, 19] introduced a dynamical model (known as the

SL model) that describes the pion production2 in terms of photon and hadron degrees of

freedom, but the disadvantage of it comes from the way they satisfy current conservation,

by assuming the same electromagnetic form factors at each vertex in the Born cross section.

A unitary isobar model was developed by Drechsel et al. [1, 41] (known as MAID model),

which uses the prescriptions of the isobar model of Walker [42] and Morehouse et al.

[43], by assuming that the resonance contributions in the multipoles have Breit-Wigner

form. Due to its parametrization of each of the resonant contributions, this simple and

practical model describes the individual multipoles and agrees with the experimental data

quite well. A most recent model has been developed at Ohio University and is known

as the Ohio model [44]. This model uses a Lorentz-covariant approach based on solving

relativistic coupled channel scattering equations in the pion-photon space. The effect of

the final-state interaction is also included and the Watson theorem is obeyed. This model

is currently under implementation at Jefferson Lab.

1.2 Motivation

Pion production reactions serve as a critical test of models of hadrons. The need for

experimental data to test these models is obvious. The single pion production above the

pion threshold region is dominated by the excitation of the nucleon resonances. The total

photo-absorbtion cross section of the proton and its decomposition into selected channels

as a function of the photon energy in the center of mass frame is given in Figure 1-1. Three

main peaks are evident in this figure, corresponding to the magnetic dipole (M1), electric

2by pion production I refer to both pion photo- and electro-production
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dipole (E1), and electric quadrupole (E2). The notation of the multipoles is associated

with the electromagnetic nature of the excitation modes induced by the photon: Sl± (Ll±),

Ml±, El± are the scalar (longitudinal), magnetic and electric multipoles, respectively,

where the ± sign is the abreviation for J = l± 1
2 , l is the relative orbital momentum of the

πN system with parity (−1)l+1, and 1
2 is the nucleon spin. The transverse polarizations

λ = ±1 of the photon, lead to magnetic and electric multipole transitions, ML and

EL, while the longitudinal polarization λ = 0 (only for the virtual photon), leads to

the Coulomb transitions, CL. The lowest electromagnetic excitation modes are given

in Table 2.1. The analysis of pion production reactions allows for the determination of

the multipoles that correspond to the nucleon resonances. Extraction of these multipoles

provides a set of quantities representing the experimental data to be compared to the

existing theoretical models. Figure 1-2 shows the predictions of different models for the

E2 and C2 quadrupole strengths over the transverse dipole M1 as function of Q2.

Several unpolarized pion production experiments took place at LEGS and MAMI

[45, 46, 47], ELSA [48] and Jefferson Lab [16], single-polarized experiment at MIT-Bates

Lab [49] and MAMI [14], double-polarized experiment at MAMI [13], NIKHEF [6] and

Jefferson Lab [50]. The results are shown in Figure 1-3, together with the model pre-

dictions presented in Figure 1-2. The uncertainty in C2 is large and hence, restricts the

extraction of a real good value. The extracted values of E2/M1 and C2/M1 are dominated

by statistics, which are limited by the measuring time (proportional to the beam charge)

and polarizations.

Up to now, the sensitivity of the correlation parameters, ATT ′ andATL′ to the quadrupole

strengths, E2 and C2, in the ∆-region is still uncertain. Figure 1-4 shows the sensitiv-

ities of the correlation parameters as a function of E2, C2 quadrupole strengths using

the MAID model at a momentum transfer of Q2 = 0.11 GeV 2. Dashed lines (bottom)

correspond to both the E2/M1 (for C2=0) and C2/M1 (for E2=0) ratios of -2.4%, solid

line (middle) to the value of 0 and the dotted line (top) to the value of +2.4%.
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Figure 1-1: The total photo-absorption cross section of the proton and its decomposition into
exclusive channels as a function of the photon energy [GeV ] in the center of mass frame. Figure
taken from [1].
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Figure 1-2: Predictions of E2/M1 (left) and C2/M1 (right). MAID model is the solid line, SL is
the short dashed curve; long dashed [2], dot-dashed [3] and dotted only left [4] represent different
constituent quark models; dotted line only in the right [5] is a Skyrme model. Figure from [6].

Figure 1-3: E2/M1 and C2/M1 world data. The predictions from Figure 1-2 are added for com-
parison. Figure from [6].
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Figure 1-4: Sensitivity of the longitudinal and perpendicular spin asymmetries to the E2 (left) and
C2 (right) amplitudes in the MAID model. The bands correspond to E2/M1 and C2/M1 rates of
0 ± 2.4%. Figure from [6].

MAID SL (dressed) SL (bare)

E2/M1 -2.2% -2.0% -1.3%

C2/M1 -6.5% -4.2% -3.2%

Table 1.2: Standard quadrupole strengths.

Figure 1-5 shows the spin-correlation parameters ATT ′ and ATL′ as a function of the

invariant mass for E2/M1 and C2/M1 at standard strengths (see Table 1.2) and at zero

strength for both the MAID and SL (Sato and Lee) models, for a momentum transfer

Q2 = 0.11 GeV 2 and beam energy Ee = 720 MeV.

In comparison with the SL model, where the bare and dressed contributions to the

N → ∆ excitation are separated and the quadrupole transition strengths affect only the

bare contribution, in the MAID model, the quadrupole strengths affect both of these
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contributions. Hence, a higher sensitivity of the correlation parameters to the quadrupole

transition strengths is obtained in this model.

Spin-dependent electron scattering from polarized protons or deuterons provides new

information on the electro-magnetic response of the nucleon and two-body system, with an

enhanced sensitivity to small amplitudes which enter the cross-section via an interference

with large amplitudes. Information on the quadrupole form factors, E2 and C2, of the

N → ∆(1232) transition, which are related to the orbital angular momentum content

in this system (D-state admixture in the wave function), can be obtained by measuring

the spin correlation parameters of the ~p(~e, e′) reaction. Without the tensor interaction

included in N − N interaction, the N → ∆ transition occurs only through the magnetic

multipole, M1, transition, whereas, due to the tensor interactions, the transition can occur

through electric and coulomb quadrupole, E2 and C2, transitions as well.

Data for the double-polarized electron-proton scattering in the ∆-region have been

recently available from NIKHEF [6, 51, 9] for a square momentum transfer Q2 = 0.11

GeV 2, beam energy of Ee = 720 MeV and a total beam charge of 54 kC for longitudinal

spin orientation and 40 kC for sideways respectively. BLAST offers a deeper insight,

because of a bigger range of square momentum transfer, Q2 from 0.08 GeV 2 to 0.38 GeV 2

3 all covered simultaneously, beam energy Ee = 0.85 GeV and a total beam charge of

almost 300 kC.

In this experiment longitudinally polarized electrons were scattered from a polarized

hydrogen target. The beam polarization was around 65% and the target polarization was

around 80%. The beam had a 25 minute lifetime at 175 mA ring current. The target gas

was injected from an atomic beam source into the target cell. Large acceptance, left-right

symmetric spectrometer detector, BLAST (Bates Large Acceptance Spectrometer Toroid)

permits simultaneous parallel/perpendicular, in-plane/out-of-plane asymmetry measure-

3actually Q2 unit is (GeV/c)2, but we use Bjorken [52] convention, i.e. c = 1
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ments. From these asymmetries, we extract the correlation parameters ATT ′ and ATL′

at different Q2 values. These polarized structure functions provide a sensitive test of the

different physical models of the γ∗p → ∆ transition, including the role of the pion field

in the ∆-excitation region. These models can be used further in the extraction of the

quadrupole strengths, E2 and C2.

Figure 1-5: Spin-correlation parameters ATT ′ and ATL′ . Top (bottom) figures are MAID (SL)
model predictions for standard strengths (solid line) and for zero strength (dashed line), for a
momentum transfer Q2 = 0.11 GeV 2 and beam energy Ee = 720 MeV. Figure from [6].
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CHAPTER 2

Theoretical Framework

2.1 Formalism

The fundamental theory that underlies the inclusive electron scattering from nuclei

is Quantum Electrodynamics (QED) which describes the electromagnetic interaction of

spin-1
2 leptons. The electromagnetic interaction is governed by the fine structure constant

α = ~c ≈ 1/137 which is relatively small, hence the one-photon-exchange approximation

(OPE) is accurate enough to describe the lepton-hadron interaction (has an accuracy of

about 1% for electron-proton scattering [1]). In this limit, i.e. of OPE, the electron tests

the proton (hadron) currents at a well defined energy and momentum transfer.

The formalism of scattering polarized electrons from polarized nuclei has been devel-

oped by Donnelly and Raskin [53, 54, 55]. The Feynman diagram corresponding to the

one-photon-exchange process (or first-order Born approximation) is given in Figure 2-1.

Figure 2-1: Feynman diagram for electron-proton scattering in the one photon exchange approxi-
mation
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The four-momenta of the initial and final electrons are denoted by K and K ′, where

K = (ǫ,k) and K ′ = (ǫ′,k′) 1, whereas the initial and final hadron are labeled P = (Ei,p)

and P ′ = (Ef ,p
′). The four-momentum transfer q = (ω,q) is given by:

q = K −K ′ = P ′ − P, q2 = −Q2 = (ǫ− ǫ′)2 − (k − k′)2 ≤ 0 (2.1)

where:

q = k− k′ = p′ − p (2.2)

ω = ǫ− ǫ′ = Ef − Ei (2.3)

Following Bjorken and Drell [52], the differential cross section in the laboratory frame 2 is

given by

dσ =
1

β

me

ǫ

∑

if

| Mfi |2
me

ǫ′
d3k′

(2π)3
Mtarget

Ef

d3p′

(2π)3
(2π)4δ(4)(K + P −K ′ − P ′) (2.4)

where β =| k | /ǫ =| ve | and
∑

if is the average sum over the initial and final states.

The invariant matrix is defined as:

Mfi =
ie

q2

(

ǫǫ′

m2
e

)1/2

je(K
′, S′;K,S)µJ

µ(P ′, P )fi (2.5)

where S, S′ are the spin four-vectors of the initial and final electron. The electromagnetic

current of the electron is:

je(K
′, S′;K,S)µ = −e

(

m2
e

ǫǫ′

)1/2

ue(K
′, S′)γµue(K,S) (2.6)

where ue and ue are the Dirac spinors for the final and initial electron, and the nuclear

1we use the space-time metric gµν from Bjorken and Drell [52] and take ~ = c = 1

2in the laboratory frame: p = 0 and Ei = Mtarget ≡ MP , see Figure 2-2
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Figure 2-2: Scattering plane conventions

electromagnetic transition current in momentum space is defined as:

Jµ(P ′, P )fi = Jµ(q)fi (2.7)

In the case of inclusive scattering, where only the outgoing electron is detected, hence

its momentum is measured, we have to integrate over p′ and we get

(

dσ

dΩe

)

fi

=
m2

ek
′

(2π)2k
f−1

rec

∑

fi

| Mfi |2 (2.8)

where frec is the nuclear recoil factor and is given by

frec = 1 +
ǫk′ − ǫ′ cos θe

k′Mtarget
(2.9)

Then, the invariant matrix element becomes

Mfi = −ie
2

q2
ue(K

′, S′)γµue(K,S)Jµ(q)fi (2.10)
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and the sum is

∑

if

| Mfi |2=
(4πα)2

(q2)2
ηe(K

′, S′;K,S)µνW
µν(q)fi (2.11)

where the electron tensor ηe(K
′, S′;K,S)µν is defined as

ηe(K
′, S′;K,S)µν =

∑

if

[ue(K
′, S′)γµue(K,S)]∗[ue(K

′, S′)γµue(K,S)] (2.12)

and the nuclear tensor being defined as

W µν(q)fi =
∑

if

Jµ∗(q)fiJ
ν(q)fi (2.13)

From these we get the inclusive cross section

(

dσ

dΩe

)

fi

=
α2

(q2)2
4m2

ek
′

k
f−1

recηe(K
′, S′;K,S)µνW

µν(q)fi (2.14)

The general cross section for the scattering of polarized electrons from protons (and

nuclei in general) can be seen to contain terms of the following types:

1. terms which occur when no electron polarization is involved

2. terms that occur when only the incident electron is polarized

3. terms which occur if only the outgoing electron polarization is involved

4. terms that occur when the incident electron is polarized and the polarization of the

scattered electron is measured

If we denote the incident electron polarization by h (i.e. the beam polarization), and

for the case of BLAST, when only the initial electron is polarized, then the cross section
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can be written in the form (see Appendix A for details):

(

dσ

dΩe

)h

fi

= Σfi + h∆fi (2.15)

where

Σfi =

(

dσ

dΩe

)unpol

fi

=
1

2

{

(

dσ

dΩe

)+1

fi

+

(

dσ

dΩe

)−1

fi

}

(2.16)

is the unpolarized cross section, and

∆fi =

(

dσ

dΩe

)pol

fi

=
1

2

{

(

dσ

dΩe

)+1

fi

−
(

dσ

dΩe

)−1

fi

}

(2.17)

is the polarized cross section. The electron tensor becomes

4m2
eηe(K

′, S′;K,S)µν = KµK
′
ν +K ′

µKν − gµν(K ·K ′ −m2
e) − imeǫµναβq

αSβ

≡ χe(K
′;K,S)µν (2.18)

and, since K ·K ′ −m2
e = −1

2q
2, we get

(

dσ

dΩe

)h

fi

=
α2

(q2)2
k′

k
f−1

recRfi (2.19)

where

Rfi = χe(K
′;K,S)µνW

µν(q)fi (2.20)

The contraction between the electron and hadronic tensors can be expressed as

4m2
eηe(K

′, S′;K,S)µνW
µν(q)fi = v0

∑

K

vKRK
fi (2.21)

where K = {L, T, TT, TL, TT ′, TL′}. The labels L and T refer to the longitudinal and

transverse components of the virtual photon polarization, hence they correspond to the
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electromagnetic nuclear current components with respect to the direction of q. The un-

primed terms arise from the product of the symmetric parts of the electron and hadronic

tensors, thus they enter Σfi, while the primed terms occur from the antisymmetric parts

of the tensors. Hence they enter ∆fi. The symmetric-antisymmetric cross terms (TT , TL,

and TL′) vanish. Hence we do not mention them. RK
fi are the hadronic response functions

and contain all of the hadronic structure information. v0 and VK are electron kinematic

and polarization factors, and for the case of the inclusive scattering they are given by 3

v0 = (ǫ+ ǫ′)2 − q2

vL =
(

q2

q2

)2

vT = −1
2

(

q2

q2

)

+ tan2
(

θe

2

)

vTT = 1
2

(

q2

q2

)

vTL = 1√
2

(

q2

q2

)

√

−
(

q2

q2

)

+ tan2
(

θe

2

)

vT ′ =

√

−
(

q2

q2

)

+ tan2
(

θe

2

)

tan
(

θe

2

)

vTL′ = 1√
2

(

q2

q2

)

tan
(

θe

2

)

(2.22)

The total differential cross section can be written as [54]

(

dσ

dΩe

)h

fi

=
( dσ

dΩe

)

Mott
f−1

rec

[

(

vLRL
fi + vTRT

fi + vTTRTT
fi + vTLRTL

fi

)

+

+ h
(

vT ′RT ′

fi + vTL′RTL′

fi

) ]

(2.23)

Then the unpolarized cross section is

Σfi =

(

dσ

dΩe

)

Mott

f−1
rec

[

(

vLRL
fi + vTRT

fi + vTTRTT
fi + vTLRTL

fi

)

]

(2.24)

3in this work we assume ultra relativistic limit: ǫ, ǫ′ ≫ me

16



and the polarized cross section

∆fi =

(

dσ

dΩe

)

Mott

f−1
rec

(

vT ′RT ′

fi + vTL′RTL′

fi

)

(2.25)

The Mott cross section represents the scattering of electrons from a structureless target

with charge +e and infinite mass

(

dσ

dΩe

)

Mott

=
α2

4E2
e

cos2(θe/2)

sin4(θe/2)
(2.26)

Note that the kinematic factors vL and vT occur in the Rosenbluth formula for scat-

tering of unpolarized electrons from unpolarized nuclei. The sensitivity to the interference

terms TT and TL can be obtained only in exclusive scattering experiments. Also, the

kinematic factors vT ′ and vTL′ , which belong to the polarized electron scattering, are pro-

portional to tan(θe/2) and thus ∆fi will be suppressed relative to Σfi at small scattering

angles.

2.2 Multipole Decomposition

The nuclear response functions RK
fi can be expressed in terms of the nuclear electromag-

netic multipole form factors. The contributing form factors are limited by the conservation

of the total angular momentum J and parity, P .

Since the virtual photon carries an intrinsic spin of 1, the total spin J and parity are

not sufficient to describe a γN helicity state. An additional characteristic is introduced

which is the total helicity λ = λγ∗ − λN = 0,±1
2 ,±3

2 . The parity conserving amplitudes

for pion electro-production represent the transition amplitude from the γ∗N partial-wave

state [56, 57]

|J, λ;±〉 =
|J,+λ〉 ∓ |J,−λ〉√

2
(2.27)
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to the πN partial-wave state

|J, λ′;±〉 =
|J,+λ′〉 ∓ |J,−λ′〉√

2
, (2.28)

where the total helicity of final state λ′ = ±1
2 (since the pion is a spin−0 particle). The

parity of these states is P = (−1)J±
1

2 . Hence, the 6 independent two-particle helicity state

amplitudes of total spin J are (T J±
λ′λ = 〈J, λ′;±|T J |J, λ;±〉):

T J±
1

2

3

2

(γ∗N → πN) = T J
+ 1

2
+ 3

2

∓ T J
+ 1

2
− 3

2

T J±
1

2

1

2

(γ∗N → πN) = T J
+ 1

2
+ 1

2

∓ T J
+ 1

2
− 1

2

(2.29)

T J±
1

2
0

(γ∗N → πN) = T J
+ 1

2
+0

∓ T J
+ 1

2
−0

It is common to describe the photon field in terms of the electrodynamics quantities

of magnetic (M), electric (E), and scalar (S) photon states. The first two are trans-

versely polarized with respect to q and involve combinations of the polarization vectors

ǫµ±1(q) = ∓1√
2
(0, 1,±i, 0), while the latter one is longitudinally polarized (only exists for

a virtual photon) and hence is proportional to ǫµ0 (q) = 1√
Q2

(|~q|, 0, 0, ω). This multipole

decomposition is the one that is commonly used for the experimental partial-wave de-

composition of γ∗N → πN . Denoting the total spin of the photon state by jγ∗ and the

photon angular momentum by lγ∗ (with jγ∗ = lγ∗

⊕

1), then one can construct a direct

relation between the two-particle helicity states |J, λ;±〉 and the magnetic, electric and

scalar photon nucleon states [58, 59]:

|J = jγ∗ +
1

2
,M(E)〉 = ∓ 1

√

2(jγ∗ + 1)

(

√

jγ∗ |J, 1
2
;±〉 +

√

jγ∗ + 2|J, 3
2
;±〉

)

|J = jγ∗ − 1

2
,M(E)〉 = ∓ 1

√

2(jγ∗ + 1)

(

√

jγ∗ + 1|J, 1
2
;∓〉 −

√

jγ∗ − 1|J, 3
2
;∓〉

)

|J = jγ∗ ± 1

2
, S〉 = ±|J, 0;∓〉. (2.30)
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Placing the interaction matrix T between the multipole states (2.30) and the πN of definite

parity helicity states (2.28), and considering relations (2.29) and using the relation between

lπ = l (the orbital momentum of the πN system) and jγ∗ , the multipole amplitudes for

the transition to a pion nucleon helicity state are [60]:

Ml+ =

√
2

4(l + 1)

(

T J+
1

2

1

2

+

√

l + 2

l
T J+

1

2

3

2

)

Ml− =

√
2

4l

(

−T J−
1

2

1

2

+

√

l − 1

l + 1
T J−

1

2

3

2

)

El+ =

√
2

4(l + 1)

(

T J+
1

2

1

2

−
√

l

l + 2
T J+

1

2

3

2

)

El− =

√
2

4l

(

T J−
1

2

1

2

+

√

l − 1

l + 1
T J−

1

2

3

2

)

Sl+ = − 1

2(l + 1)
T J+

1

2
0

Sl− = − 1

2l
T J−

1

2
0
. (2.31)

In the initial state the photon has spin 1 and its transverse polarizations, λγ∗ = ±1

lead to electric and magnetic multipole transitions, EL and ML respectively, while its

longitudinal polarization, λγ∗ = 0 leads to longitudinal or Coulomb transitions, CL.

The final state is described by an orbital momentum l of the pion relative to the

recoiled nucleon, with parity (−1)l+1. Since the total spin of the final state, J has to

equal the total spin of the initial state, namely

J = |l ± 1

2
| = |L± 1

2
| , L = Ltarget + Lγ∗

we find that

CL, EL : (−1)L = (−1)l+1 → |L− l| = 1

ML : (−1)L+1 = (−1)l+1 → L = l
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L Electromagnetic πN system Pion electoproduction
multipole J l multipole

0 C0 1/2 1 L1−
1 E1/C1 1/2 0 E0+/L0+

3/2 2 E2−/L2−
M1 1/2 1 M1−

3/2 1 M1+

2 E2/C2 3/2 1 E1+/L1+

5/2 3 E3−/L3−
M2 3/2 2 M2−

5/2 2 M2+

Table 2.1: Amplitudes for pion electroproduction.

In Table 2.1 we give the lowest order electromagnetic excitation modes and the corre-

sponding states of the πN system [1]. The first index of the pion multipoles describes the

orbital momentum, l, and the second one characterizes the orientation of the spin and the

orbital momentum of the nucleon, i.e. parallel is +1, which means J = l + 1
2 . From this

table we see that the ∆ resonance, where J = 3
2 and l = 1, can be excited by both M1

and E2/C2 transitions.

This decomposition allows us to calculate the more customary CGLN amplitudes [33,

35] in terms of the multipoles using:

F1 =
∑

l≥0

{(lMl+ + El+)P
′

l+1 + [(l + 1)Ml− + El−]P
′

l−1}

F2 =
∑

l≥1

[(l + 1)Ml+ + lMl−]P
′

l

F3 =
∑

l≥1

[(El+ −Ml+)P
′′

l+1 + (El− +Ml−)P
′′

l−1]

F4 =
∑

l≥2

(Ml+ − El+ −Ml− − El−)P
′′

l

F5 =
∑

l≥0

[(l + 1)Ll+P
′

l+1 − lLl−P
′

l−1]

F6 =
∑

l≥1

[lLl− − (l + 1)Ll+]P
′

l (2.32)
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where P
′

l , P
′′

l are the first and the second order derivatives, respectively, of the Legendre

polynomials, Pl; they are functions of the polar angle of the pion in the CM frame,

θ = θCM
π . Note that in the literature, the scalar transitions are often described by Sl±

multipoles, which correspond to the decomposition of the amplitudes F7 = |k|F6/ω and

F8 = |k|F5/ω. They are connected to the longitudinal ones by Sl± = |k|Ll±/ω through

current conservation. This allows us to use only six CGLN amplitudes in expressing the

observables for pion electro-production.

The inclusive cross section can be defined as [61, 21]

σ = σT + ǫ σL + Px∗
√

2ǫ(1 − ǫ)σTL′ + Pz∗
√

1 − ǫ2 σTT ′ (2.33)

where the expansion of the partial cross sections, σL, σT , σTL′ and σTT ′ as a function of

multipoles, is given in Appendix A. x∗, z∗ are the projections of the target spin onto the

ux,z axes (see Figure 2-2), and P = Pb Pt is the beam and target polarization product.

The kinematic factor ǫ (virtual photon transverse polarization) is given in the laboratory

frame by

ǫ =

[

1 + 2
q2

Q2
tan2 θe

2

]−1

(2.34)

The inclusive cross section can be rewritten as

σ = σT + ǫ σL + P
[

√

2ǫ(1 − ǫ) σTL′ sin θ∗ cosφ∗ +
√

1 − ǫ2 σTT ′ cos θ∗
]

(2.35)

The relation between the spin-correlation parameters and σTT ′ , σTL′ is given by

ATT ′ =
√

1 − ǫ2
σTT ′

σT + ǫσL
=

√

1 − ǫ2
σTT ′

σ0
(2.36)

ATL′ =
√

2ǫ(1 − ǫ)
σTL′

σT + ǫσL
=

√

2ǫ(1 − ǫ)
σTL′

σ0
(2.37)
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2.3 Nucleon Models

2.3.1 Phenomenological Models

Two more recent models are worth mentioning: MAID, the unitary isobar model

developed by Drechsel et al. [1, 41] and the SL (Sato and Lee) dynamical model [40, 19].

MAID uses the prescriptions of the isobar model of [42, 43] which assumes that the

resonance contributions in the relevant multipoles have Breit-Wigner forms. They include

nucleon resonances such as: P33(1232), P11(1440), D13(1520), S11(1535), F15(1680) and

D33(1700). The Q2 dependence of the γNN∗ vertices is determined via the corresponding

helicity amplitudes. The multipole amplitudes relevant to the resonant regions are (in

Breit-Wigner form):

Al±(W ) = Al±fγN (W )
ΓtotWRe

iφ

W 2
R −W 2 − iWRΓtot

fπN(W )CπN (2.38)

where fπN is the Breit-Wigner factor which describes the decay of the N∗ resonance with

total width Γtot and partial width ΓπN . CπN is the isospin factor of the resonance. The

factor fγN (W ) is a parametrization of the W dependence of the γNN∗ vertex below the

resonance peaks and WR is the total energy in the center-of-momentum frame (CM) at the

resonance position. The electromagnetic amplitudes Al± are linear combinations of the

usual electromagnetic helicity amplitudes A1/2 and A3/2. The non-resonant contributions

are described by traditional evaluation of the Feynman diagrams, derived from an effective

Lagrangian density function. These non-resonant contributions are referred to as the

Born terms and are described using a mixed pseudovector-pseudoscalar πNN coupling,

hence taking into account the consistency of the pseudo-vector coupling with low energy

theorems, while the renormalizability of pseudo-scalar coupling implies a better description

of the data at higher energies (above 500 MeV ). MAID implements both schemes by

introducing a gradual transition between them. Their effective Lagrangian called a hybrid
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model (HM) is written as

LHM
πNN =

Λ2

Λ2 + ~q 2
0

LPV
πNN +

~q 2
0

Λ2 + ~q 2
0

LPS
πNN (2.39)

where ~q0 is the asymptotic pion momentum in the πN CM frame and the cut-off parameter

Λ = 450 MeV . PV stands for pseudovector, while PS for pseudoscalar. The two PS and

PV πNN coupling are given by

LPV
πNN = igψγ5τ · ψπ

LPS
πNN = − f

mπ
ψγ5γµτ · ∂µπψ

where g2/4π = 14.28 and f/mπ = g/2mN . PV coupling is preferred at low energies, since

it is consistent with low energy theorems (LET) and fulfills PCAC (partially conserved

axial current), while the renormalizable PS coupling gives a better description at higher

energies. The unitarity of the model is implemented via the parameter φ in (2.38) and

its role is to adjust the phase of the total multipoles to the corresponding pion-nucleon

scattering phase shift δπN . The latter values are taken from the analysis of the former

VPI group (SAID program) [22]. For pion electro-production, MAID assumes the same

electromagnetic form factors at each relevant vertex in the Born terms in order to satisfy

current conservation. Such a simple and practical model, due to the parametrization

of each of the resonant contributions, describes the individual multipoles very well and

overall agrees extremely well with the experimental observables.

The SL model describes the pion production in terms of photon and hadron degrees

of freedom. They start with the Hamiltonian

H = H0 +HI = H0 +
∑

M,B,B′

ΓMB↔B′ (2.40)
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where H0 is the free Hamiltonian and ΓMB↔B′ describes the absorption and emission of

a meson (M) by a baryon (B). Such a Hamiltonian is obtained from a phenomenological

Lagrangian for N , ∆, π, ρ, ω and photon fields. A unitary transformation is performed

in (2.40) up to second order on
∑

ΓMB↔B′ to obtain an effective Hamiltonian:

Heff = H0 + vπN + vγπ + ΓπN↔∆ + ΓγN↔∆ (2.41)

where vπN and vγπ are the non-resonant πN ↔ πN and non-resonant γN ↔ πN po-

tentials, respectively. The ∆ excitation is described by the vertex interactions ΓγN↔∆

and ΓπN↔∆. The non-resonant vγπ consists of the usual pseudovector Born terms, ρ and

ω exchanges, and the crossed ∆ term. The idea behind this unitary transformation is

to eliminate from the Hamiltonian the unphysical vertex interactions, MB ↔ B′ with

mM + mB < mB′ . The resulting effective Hamiltonian Heff is energy independent and

hermitian. Hence the unitarity of the resulting amplitude is trivially satisfied. The draw-

back of the model is again the way they satisfy current conservation, by assuming the

same electromagnetic form factors at each relevant vertex in the Born terms. MAID and

Figure 2-3: Sato and Lee: resonant pion production term (left) and non-resonant followed by
resonant pion rescattering term (right)
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SL differ mostly in the treatment of the non-resonant terms. MAID calculates dressed

quantities of the N −∆ transition, whereas SL presents bare quantities. In the SL models

the ∆ production terms are separated into a resonant and non-resonant terms, followed

by a resonant pion rescattering process (see Figure 2-3).

In the MAID model these terms are not separated (see Figure 2-4). In the SL model

the non-resonant followed by resonant pion rescattering terms dress the bare γ∗N → ∆

vertex and strongly enhance its strength at low Q2. Both SL and MAID models require

the square transfer momentum, Q2, and the invariant mass, W as input, and calculate

the partial cross sections, σK , K = L, T, TL, TT, TL′, TT ′, that appear in the scattering

cross section.

Figure 2-4: MAID first-order diagrams for pion production

A new model has been proposed by the Ohio University, known as Ohio model [44].

This model uses a manifestly Lorentz-covariant approach based on solving relativistic

coupled-channel scattering equations in the pion-photon channel space. They approach

the electromagnetic induced reactions in a way that satisfies the unitary dynamics by
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setting up the following coupled-channel equations:







Tππ Tπγ∗

Tγ∗π Tγ∗γ∗






=







Vππ Vπγ∗

Vγ∗π Vγ∗γ∗







+







Vππ Vπγ∗

Vγ∗π Vγ∗γ∗













Gπ 0

0 Gγ∗













Tππ Tπγ∗

Tγ∗π Tγ∗γ∗






(2.42)

where T and V are the amplitudes and driving potentials of the πN scattering (ππ),

pion electro-production (γ∗π), absorption (πγ∗), and the nucleon Compton effect (γ∗γ∗),

respectively, while G is the two-particle propagator. Figure 2-5 shows the Bethe-Salpeter

(BS) equation in a schematic form for the two-body scattering equation. The effect of the

pion-nucleon final state interaction is thus explicitly included in a way that is consistent

with the two-body unitarity. Hence the Watson theorem is obeyed exactly. Special care is

taken to satisfy current conservation for the Born terms by imposing the Ward-Takahashi

identity at the nucleon and pion electromagnetic vertices, thereby allowing the use of

realistic electromagnetic form factors.

= +V V GT T

k k’

p p’

Figure 2-5: Two-body scattering equation: schematic form

This model is currently being implemented at Jefferson Lab. The main uncertainty of

the model lies in the treatment of the u- and t-channel terms in the potential Vπγ∗ .
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2.3.2 Constituent Quark Models

In these models the nucleon consists of three quarks, which move in a confining po-

tential. The proton (uud) and the neutron (ddu) are isospin symmetric: they transform

into each other by interchanging the u- and d-quarks. The interaction binding quarks

into hadrons is due to multi-gluon and pion exchange between the quarks. In the quark

model of the nucleus, the ∆ is the hyperfine partner of the nucleon, with its three quarks

(uud) aligned such that J∆ = 3/2, i.e. the spins of the three constituent quarks have to

be parallel. For example, for the ∆ particles, the wave function is written in terms of

constituent quarks

|∆++〉 = |u↑u↑u↑〉 |∆+〉 = |u↑u↑d↑〉 |∆0〉 = |u↑d↑d↑〉 |∆−〉 = |d↑d↑d↑〉

where the arrow indicates the spin orientation.

Hadrons are classified in two groups: baryons which are fermions with half-integer

spin, and mesons, which are bosons with integer spin. The three constituent quarks in

the baryon must satisfy the Pauli principle: the total baryonic wave function

ψtotal = ξspatial · ζflavour · χspin · φcolour (2.43)

must be antisymmetric under the exchange of any of the two constituent quarks.

The constituent quark model predicts quite well the baryon magnetic moments. In

the quark model, the proton magnetic moment in its ground state (l = 0) is given by the

vectorial sum of the magnetic moments of the three constituent quarks:

µP = µu + µu + µd (2.44)
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and has the expectation value:

µP = 〈µP 〉 = 〈ψP |µP |ψP 〉 (2.45)

with ψP being the total antisymmetric quark wave function of the proton. Using the spin

part of the wave function of the proton

χP

(

J =
1

2
,mJ =

1

2

)

=

√

2

3
χuu(1, 1)χd

(

1

2
,−1

2

)

−
√

1

3
χuu(1, 0)χd

(

1

2
,
1

2

)

(2.46)

we deduce that

µP =
2

3
(µu + µu − µd) +

1

3
µd =

4

3
µu − 1

3
µd (2.47)

where µu,d are the quark magnetons:

µu,d =
zu,de~

2mu,d
(2.48)

The measured magnetic moment of the proton is given by

µP = 2.79µN = 2.79
e~

2MP
(2.49)

which is very close indeed to the quark model predictions.

Several approaches have been made to the constituent quark model. Isgur et al. [2]

introduced hyperfine interactions, residual one-gluon and one-pion exchanges between the

quarks, which resolved the degeneracy in the nucleon and ∆ mass, but their electro-

magnetic properties were affected. Capstick [3] estimated the relativistic effects by using

relativistic wave functions. As a results, the Q2 dependence of E2/M1 and C2/M1 de-

creased. Buchmann et al. introduced a chiral symmetric quark model, but valid only at

low energies. These approaches cannot offer practical solutions to intermediate energy

scattering reactions.
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2.3.3 Bag Models

The MIT bag model was formulated first by Chodos et al. [62, 63]. Their first La-

grangian consists of Dirac particles moving inside a bag described by a step function ΘV ,

and there is a bag pressure that leads to a volume energy ∼ B, and a bag surface term

described by a surface delta function ∆S

LMIT =
(

∑

q(i∂| −mq)q −B
)

ΘV − 1

2

∑

qq∆S (2.50)

The solutions of this Lagrangian are the spherical Bessel functions with the wavenumbers

quantized by the boundary condition where the component of the current in the direction

nµ perpendicular to the bag surface vanishes

nµqγµq∆S = 0 (2.51)

The isoscalar and isovector components of the electromagnetic current are conserved, but

the axial current is not. To allow for this latter component to be conserved, isoscalar (σ)

and isovector (π) mesons have been introduced in addition to quarks, hence the Lagrangian

is replaced by a surface interaction of the quarks with these mesons:

Lσ =
(

∑

q(i∂| −mq)q −B
)

ΘV +
1

2
(∂µσ)2 +

1

2
(∂µπ)2 −

∑

q
σ + iτ · πγ5

2(σ2 + π2)1/2
q∆S (2.52)

Viollier et al. [64] removed the degeneracy in the mass between the nucleon and the

∆ by introducing the one-gluon-exchange interaction. Hence the ∆-bag gets deformed. In

addition, Vento et al. [65] incorporated π-mesons, which cause a larger deformation of the

bag surface. Cloudy bag models have been studied by [66, 67, 68] and the same behaviour

has been observed. They give a value for the πN∆ coupling constant, gπN∆, which is in

29



better agreement with the experimental value than other models.

2.3.4 Skyrme Models

The Lagrangian of the original Skyrme model [69] is given by [1]

L =
1

4
f2

πTr(∂µU∂
µU †) +

e2

32
Tr([U †∂µU,U

†∂νU ][U †∂µU,U †∂νU ]) (2.53)

where fπ is the pion decay constant, U an arbitrary SU(2)-matrix, and e a parameter

which determines the size of the soliton. This Lagrangian is an effective description of the

hadronic interactions at low energies in terms of mesonic degrees of freedom (i.e. weakly

interacting pions). In this model a baryon consists of Nc quarks and is identified with a

soliton. A soliton is ”an isolated wave that propagates without dispersing its energy over

larger and larger regions of space”. The fact that solitons exhibit particle-like properties,

because the energy is, at any instant, confined to a limited region of space, were proposed

as models for elementary particles. The pion is coupled to the nucleon soliton solution in

two different approaches: one sees the pion as a small amplitude fluctuation [70], and the

other one sees it as a chiral perturbation [71].

The interest in this model is motivated by ’t Hooft’s observation [72] that for a large

number of colors (NC → ∞), QCD reduces to a weakly interacting pions theory, hence

baryons can be seen as solitons in this theory [73].

Walliser and Holzwarth [5] solved the equation of motion in the Skyrme model up to

the order of 1/N2
C . From the soliton’s rotation they extracted the quadrupole C2/M1

deformation.

The results of these models are shown in Figure 1-2.
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CHAPTER 3

Experimental Setup

The experiment discussed in this thesis has been performed on the South Hall Ring

(SHR) at the MIT-Bates Linear Accelerator Center using the Atomic Beam Source (ABS)

and the Bates Large Acceptance Spectrometer Toroid (BLAST) detector. The com-

bination of a highly polarized electron beam, a highly polarized internal target, and a

relatively large acceptance spectrometer detector, is rather unique for intermediate energy

nuclear physics. The experimental setup is described in detail in this chapter, as well as

the performance.

3.1 The MIT-Bates Linear Accelerator

The MIT-Bates Linear Accelerator delivers longitudinally polarized electrons to the

BLAST detector. A schematic overview of the entire facility is given in Figure 3-1. Low

energy polarized electrons are injected from the polarized source into the linear accelerator.

The linear accelerator consists of 190m of accelerating RF cavities [74]. A recirculator

transports the beam back to the beginning of the accelerator for a second pass through

the RF cavities in order to accelerate the electrons. For this experiment the polarized

beam leaves the linear accelerator at an energy of 0.850 ± 0.0008 GeV, and is injected

into the SHR through a switchyard that guides the beam to various possible experimental

areas. The beam is then circulated through the BLAST polarized internal target and

spectrometer located in the Bates SHR. Over 3 Million Coulomb of integrated charge
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have been delivered to BLAST for production data taking.

Figure 3-1: Overview of the MIT-Bates Linear Accelerator Center

3.1.1 The Polarized Source

Longitudinally polarized electrons are produced by photo-emission using a λ = 810

nm circularly-polarized multimode fiber-coupled diode array laser system incident on a

GaAs0.95P0.05 crystal [75]. A Cesium coating is applied to reduce the work function of

the crystal. The coating has to be restored about once a week.

The polarization state of the beam is determined by a half-wave plate in the path of

the laser source. The plate is moved in or out with each ”fill” (injection into the SHR),

thus resulting in alternating fills having opposite polarization.

The energy of electrons entering linac is 0.36 MeV. The source is able to inject 6 mA

into the accelerator.

The beam polarization at the source was measured periodically with a transmission

polarimeter [76].
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3.1.2 The Bates South Hall Ring

The SHR is designed to operate as either a storage ring for internal target experiments

(such as BLAST) or as a pulse stretcher ring to produce nearly continuous-wave beam for

external target experiments [77]. In the storage mode, currents in excess of 200 mA are

achieved by stacking beam pulses of a few mA head-to-tail at an injection rate of 2 − 20

Hz. This head-to-tail injection results in the storage ring having a duty factor of 99% [78].

The SHR has 16 dipole magnets each bending the beam by 22.5◦. An RF cavity

compensates for energy loss due to synchrotron radiation. The beam energy is calibrated

by a precise field-map of the integrated magnetic field along the dipoles in the ring [79].

The longitudinal polarization of the electrons in the storage ring is preserved by two

spin rotators (Siberian snake) on the opposite side of the ring to the internal target [76].

The snake was designed by the Budker Institute of Nuclear Physics in Novosibirsk, and

consists of two superconducting solenoids and 5 quadrupoles. The solenoids rotate the

electron spin by 180◦ about the momentum vector such that the precession of the electron

spins in the north arc of the ring compensates for that in the south arc [80].

Four beam slits made of 1 cm thick Tungsten material, are installed upstream of the

target in order to limit the amount of stray electrons hitting the detectors due to multiple

scattering in the beam pipe. The position of the slits depends on the tune of the injection

and is established empirically. The slits are operated by remotely controlled, motorized

bellows and they are totally withdrawn for injection. After injection they are moved in

slowly, until they begin to impact the beam lifetime, and at that point they are withdrawn

only by 1mm, essentially cutting away electrons outside of a 6σ beam distribution. The

slits are located a few betatron λ/2 upstream of the target in order to image the cell.

The main specifications of the SHR during BLAST experiment are given in Table 3.1.

The beam current is measured non-destructively with a zero-flux Lattice DC Current

Transformer (LDCCT) [81]. The LDCCT uses a primary core winding around the beam
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Beam energy E 850.0 ± 0.8 MeV
Beam spread ∆E 0.20 MeV
Max. Current I 230 mA
Lifetime τ 25 min
Beam Polarization Pb 0.6558 ± 0.0007 ± 0.04

Ring length L 190.205 m
Harmonic number h 1812
Rev. Frequency βc/L 1.577 MHz
RF frequency ≈ hβc/L 2856 MHz
RF Wavelength ≈ L/h 10.5 cm

Bending radius ρ 9.144 m
Magnetic rigidity Bρ 2.8353 T m

Table 3.1: South Hall Ring (SHR) specifications during BLAST experiment.

with a nonlinear magnetic response to the current. A secondary winding driven by a fixed

signal is coupled to the primary. The second harmonic generated by the nonlinear response

is proportional to the absolute beam current passing through the coil. The output voltage

goes to a 16 bit analog-to-digital converter (ADC), and a voltage-to-frequency converter

(VFC). The number of oscillations in the VFC is proportional to the instantaneous beam

current passing through the LDCCT. The digitized voltage is sent to the Experimental

Physics and Industrial Control System (EPICS) and the number of oscillations of the

VFC are counted in two scaler channels, DCCT and BDCCT. The experiment trigger

electronics inhibits counting in the BDCCT whenever data acquisition is inhibited be-

cause of electronic dead time, target transition between well-defined states or high voltage

trips, hence by integrating the BDCCT over time, we measure the actual charge delivered

through the target while the experiment is taking data.

The LDCCT is calibrated regularly with current injected into a calibration loop and

measured by an ammeter with 1 pA resolution. Because of the nonlinearity of the VFC,

the scaler read-outs are not exactly proportional to the beam current. The scalers are

calibrated using fake runs when beam is turned off and currents from 0 to 200 mA, in
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5 mA steps, are injected into the calibration loop. The beam current I, good up to 0.5%

for currents between 20 and 250 mA, is given by

I[mA] =
(

2.90027 + 3.01409 × 10−4 S + 6.18094 × 10−10 S2
)

(3.1)

where S is the DCCT or BDCCT scaler value minus a pedestal of 2400 counts.

The integrated charge delivered to the BLAST experiment over the course of the 2004-

2005 running period is given in Figure 3-2. The blue line indicates the distribution of the

charge for beam in the South Hall Ring, the light yellow represents the distribution of

the charge delivered to the experiment and the dark yellow is the charge used for data

taking. Note that the plot includes charge delivered to both the hydrogen and deuterium

experiments.

Figure 3-2: Integrated charge delivered to the BLAST experiment over the course of the 2004-2005
running period

Before the injection, the detector high voltages are ramped down to standby values
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to protect the detectors. Once the ring is filled, the detectors are ramped up to their

operating high voltage values, and data acquisition are started. The down time for each

fill is between one to two minutes. The beam intensity in the ring dissipates because of the

scattering of the beam electrons with target gas and the residual gas in the ring vacuum.

The maximum current and lifetime depend on the quality of the stored beam. Figure 3-3

shows the typical current and lifetime monitored by LDCCT. The blue curve is the beam

current stored in the ring. The yellow curve is the measured beam lifetime. For these

series of fills, the ring was filled to 215 mA and dumped at 180 mA. The beam life time

is about 28 minutes.

DumpData Taking
Inject

Figure 3-3: Beam current and lifetime

Assuming an exponential decay of the beam current

I(t) = Imaxe
−t/τ , (3.2)

and defining the down time, tdown, as the time during which data acquisition is inhibited

for the detector high voltages to be ramped down, beam in the ring to be dumped and
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Target Mode Beam Mode LIGIT Pressure (Torr)

H ABS stored 8.8E-08

H ABS injection 1.2E-07

Empty stored 8.8E-08

Empty injection 1.2E-07

Table 3.2: LIGIT pressure for different operating modes

refilled, and detectors ramped back up to operating conditions, one can determine the

optimal data acquisition time, tDAQ, to maximize the average current,

tDAQ ≈
√

2 · τ · tdown. (3.3)

During operation, Eq. 3.3 is used as a guide to choose the duration of the data taking

runs before dumping and refilling.

Maintaining a good ring vacuum is very important in order to preserve the beam

lifetime. Table 3.2 summarizes typical pressures in the target region for different operating

modes. These pressures are measured by the Lattice Ion Gauge Internal Target (LIGIT)

Figure 3-4: LIGIT Pressure vs Time

37



located in the region of the scattering chamber. Figure 3-4 shows a snapshot of the LIGIT

pressure from the EPICS system, during data acquisition. Note the slight increase in

LIGIT pressures during the injection.

3.1.3 Compton Polarimeter

The beam polarization in the ring is monitored in real time by a Compton polarimeter

[82, 83]. The Compton polarimeter exploits the spin asymmetry of back-scattered polar-

ized photons. Circularly polarized photons from a 5 W laser at 532 nm are incident on the

stored electron beam in a section of the ring upstream of the target. Photons are scattered

into a narrow cone centered around the incident photon path. By alternating the polar-

ization of the incident photons via a Pockels cell [84], the spin-dependent asymmetry for

this scattering can be measured. Backscattered photons are detected by a CsI crystal used

as a calorimeter and the laser beam is chopped with a mechanical wheel to allow simulta-

neous background measurement. The helicity asymmetry as a function of photon energy

is formed and fit to the theoretical asymmetry in order to extract the beam polarization.

The analysis is performed in real time by a dedicated Compton control-analysis software

package for immediate feedback. Then the complete data set is analyzed for secondary

corrections. The typical helicity asymmetry and energy-dependent yield and from one fill

are shown in Figures 3-5 and 3-6. A spin flipper [85] is used to reverse the helicity of

the electron beam while in the ring. Its purpose is to study the false asymmetry in the

Compton Polarimeter [86]. Sixteen sets of data are taken, each lasting around 5 hours.

The helicity is flipped once during a fill such that the instrumental false asymmetries in

the Compton Polarimeter are canceled. The flipper efficiency, defined as the polarization

maintained after the flip,
(h+ + h−)after

(h+ + h−)before
, is around 96%. It has been concluded that the

electron beam is equally polarized in the two helicity states.

The main causes of systematic errors in measuring the beam polarization are [86]: 1)

Energy calibration of the CsI crystal calorimeter (±0.03); 2) Laser polarization (±0.02);
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Figure 3-5: Compton polarimeter beam polarization data vs. time
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Figure 3-6: The yield (left) and asymmetry (right) of the Compton scattering during one fill of
the storage ring. The total yield (solid black curve) is shown with the the background (dashed
red curve). The laser helicity asymmetry is fit to the theoretical asymmetry to extract the beam
polarization.
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3) misalignment between the electron and laser beam (±0.01). The average polarization

for the hydrogen production run period from October to December of 2004 is 0.6558 ±

0.0007stat ± 0.0004sys.

3.2 Polarized Internal Target

The BLAST polarized internal target uses an Atomic Beam Source (ABS) to inject

polarized hydrogen or deuterium atoms into an internal storage cell. The ABS was orig-

inally used in the AmPS Ring at the NIKHEF laboratory [87] and modified to operate

efficiently in the BLAST toroidal magnetic field [88].

3.2.1 Atomic Beam Source

The physical layout of the ABS is shown in Figure 3-7. Both deuterium and hydrogen

are produced by the BLAST ABS. We focus here only on the hydrogen target. Molecular

hydrogen is pumped into a dissociator. An RF frequency of 27.12 MHz is applied, and the

molecular gas dissociates into its atomic constituents. The atomic beam is then ejected

from the nozzle; the nozzle is cooled down to ∼ 70 K to inhibit molecular recombination

of the dissociated atoms as well as to reduce the individual atomic thermal velocities for

more efficient focusing. The ejected beam is focused by the sextupole magnet system and

passes into the ABS RF transition units. The atomic fraction α quantifies the degree

of dissociation, which is defined as the population of selected atomic species versus total

population in the target, and is given by

α =
P a

P a + 2κνPm
(3.4)

where P a and Pm are the partial pressures of the atomic and molecular gases in the target

respectively [89]. The factor κν ≃ 1/
√

2 accounts for the different atomic and molecular

velocities.
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Figure 3-7: BLAST ABS and target storage cell.
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Figure 3-8: Hydrogen Atomic Fraction versus Flow Rate and Nozzle Temperature

Figure 3-8 shows the dependence of hydrogen atomic fraction on RF power for different

flow rates in the dissociator and nozzle temperatures. As the flow rate increases, the atomic

fraction decreases - so more RF power is required to obtain the same level of dissociation

[89].

Polarization of the atomic beam is achieved by exploiting the hyperfine degeneracy of

hydrogen spin states in the presence of a magnetic field (see Figure 3-9). By applying a

superposition of a time-varying and static magnetic field, transitions between the hyperfine

states can be induced. Atoms populating undesired hyperfine states are defocused by a

sextupole (6-pole) magnet and removed from the atomic beam using the Stern-Gerlach

effect [90]. Depending on the desired polarization state, the atomic beam passes through

three kinds of transitions: a strong field transition (SFT), a weak field transition (WFT),

and a medium field transition (MFT). The SFT uses a time-varying magnetic field directed

perpendicular to a static one to cause atoms to switch populations between different
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hyperfine multiplets; the WFT and MFT use a time-varying magnetic field directed along

the static one to cause population changes within a hyperfine multiplet. By applying the

correct sequence of transitions, it is possible to produce positively or negatively vector

(PZ) polarized hydrogen beams.
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Figure 3-9: Hyperfine states of hydrogen.

The following multiplet occupation sequence shows the procedure followed to obtain

Vector minus polarization for hydrogen:
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The ABS intensity is defined as

I(Q) = I0 ·Q · e−Q/Q0 (3.6)

where Q is the flow into the dissociator, I0 is the intensity in the absence of rest gas scat-

tering, and Q0 is a factor parameterizing the beam attenuation due to rest gas scattering.

An average hydrogen ABS intensity of ≃ 2.6 × 1016 atoms/s was achieved during the

course of the experiment. This intensity corresponds to a target thickness of ≃ 4.5× 1013

atoms/cm2 [89].

3.2.2 Target Cell and Scattering Chamber

After the ABS chamber, the polarized atomic beam enters the target cell within the

scattering chamber. The target cell is internal to the SHR and is cylindrical in shape

with no end caps to interact with the beam. It has a diameter of 15 mm and a length

of 60 cm along to the beam. The target cell is used to maximize the luminosity of the

polarized atomic beam while preserving the stored electron beam in the SHR. The atomic

beam enters via the inlet tube at the middle and disperses throughout the entire 60 cm

length of the cell. The density profile along the cell is approximately triangular [91].

To decrease depolarization within the target cell, the inside of the cell is coated with

Drifilm and kept at ∼ 100 K. A holding field produced by two orthogonal sets of coils is

used to define the target polarization axis. It is capable of generating longitudinal and

transverse magnetic fields. The holding magnet is limited in length, however, to 40 cm.

As such, only the innermost 40 cm of the target cell contain reliably polarized atoms. The

polarization for the hydrogen target is derived from an electron-proton elastic scattering

analysis. Coincidence and timing cuts are used to select good events and the beam-target

asymmetry is compared to a Monte Carlo simulation.

The measured product of beam and target polarization for the data collected at the
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Figure 3-10: Hydrogen target polarization for fall 2004 data.

end of 2004 is shown in Figure 3-10 for the entire running period. Overall, using the beam

polarization from the Compton polarimeter, we get Pz = 0.8 ± 0.0004%

3.3 BLAST Detector

The Bates Large Acceptance Spectrometer Toroid experiment, BLAST, at the MIT-

Bates Linear Accelerator Laboratory was designed to study in a systematic manner the

spin-dependent electromagnetic interaction in few-nucleon systems at momentum transfers

below 1 GeV/c [92]. BLAST is able to make simultaneous measurements of several reaction

channels for different combinations of beam helicity and target polarization (vector for

hydrogen, both vector and tensor for deuterium). The large acceptance of the detector

allows the measurement of observables over a broad kinematic range. The azimuthal

symmetry and the two-opposite sectors (left and right) configuration allow for single-
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arm, coincidence and super-ratio experiments. The detector package consists of individual

detector arrays designed and instrumented for the intended measurements [93]. The design

was driven by the experiment’s requirements of timing resolution, momentum, tracking

resolutions and particle identification. The BLAST detector is built around eight coils

of a toroid magnet which divide the space around the beam line into eight sectors. The

top and bottom sectors between the coils contain the ABS, while the two horizontal

sectors are instrumented with the individual detectors, producing a left-right symmetrical

design. Scattered particles originated from the target cell pass through, in an radially

outward sequence, drift chambers (WC), Čerenkov detectors (CC), time-of-flight (TOF)

scintillators and neutron counters (NC). The neutron detectors are the only asymmetric

component of BLAST: the right sector has two extra sets of scintillators (LADS). Figure 3-

11 shows the position of each individual component in the BLAST detector, and Figure 3-

12 shows the size of the individual detectors. All these detectors have been used for the

inclusive scattering studies.

3.3.1 BLAST Toroid Magnet

To determine the charge and momenta of the particles, a strong magnetic field is re-

quired in the region of the drift chambers. The BLAST toroidal magnetic field is generated

by eight copper conductor coils symmetrically arranged around the beam line, as shown

in Fig. 3-13.

The toroidal field provides a field-free target region so that the target holding field

and incident electron beam are not negatively affected. The coils are shaped to provide

maximum dispersion for the forward electrons and have a 1 m opening in the back to

accommodate the ABS and internal target. The coils operate, during data taking, at their

maximum current of 6731 A to provide maximal momentum resolution. The maximum

magnetic field at this current is 3800 Gauss, which occurs ∼ 1 m from the beam line in

the vicinity of the drift chambers. Strong aluminum frames support the coils in place,
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Figure 3-11: BLAST Detector
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Figure 3-12: BLAST laboratory frame
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Figure 3-13: BLAST copper coils.

and the maximum deflection of the frame is 7-8 mm when the field is energized at full

strength. The field mapping was done with an automated x-y-z table with a spatial

resolution of 0.05 mm and two three-dimensional Hall probes with 0.1% precision. The

probe positions are surveyed at 10 to 20 points and related to the x-y-z table coordinates.

The uncertainties in the probe positions are ∼ 0.05 mm. The table coordinates and

fields are recorded at each of the ∼ 43, 000 points, measured in a grid of 5 cm spacing

in each direction. The mapped field is interpolated into a rectangular grid of 5 cm step

in each direction in the BLAST coordinate system and is analytically extended beyond

the measured region for a more robust trajectory fitting. The field is also modeled in

TOSCA and an analytical Biot-Savart calculation, and the field map agrees with both

models to within 1%. The 7-8 mm displacement observed in geometric survey of coil

positions is also confirmed by the Bio-Savart calculation where coil positions are moved
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to fit the observed field values. The interpolated and extended grid covers a rectangular

volume of −200 cm ≤ X ≤ 200 cm, −70 cm ≤ Y ≤ 70 cm and −10 cm ≤ Z ≤ 290 cm (See

Figure 3-12 for the definition of the coordinate system). There are about 150 points in

the 143, 289-point grid where the mapped values differ from the Bio-Savart calculations by

more than 200 G. This is attributed to occasional x-y-z table jamming during mapping,

which caused missing field values for these points. The measured field value is replaced

with the Bio-Savart calculations for these points [94]. The field-map of By in the central

horizontal plane is shown in Fig. 3-14.

Figure 3-14: Magnetic field map of By in the central horizontal plane of BLAST.

3.3.2 Drift Chambers

In order to obtain the information for a detected particle (momentum, scattering vertex

position, particle identification, etc.), drift chambers are used. Operation of the chambers

depends on the principles of charged particles traveling through a gas volume [95, 96, 97].

Each sector contains three chambers made of one-piece aluminum frames that are
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joined together with spacers into one single air-tight chamber (see Figure 3-15). The

frames were pre-stressed to compensate for the deformation from the wire tension. A

Chamber 3

Chamber 2

Chamber 1

SuperLayer 2

SuperLayer 1

wZ

Xw
Y

w

Figure 3-15: One sector drift chambers

coordinate system is defined for each of the six chambers where xw is in the horizontal

plane pointing toward the upstream direction at an angle of α = 163.5◦ with respect to

the beam direction, yw points vertically up in the left sector and down in the right sector

and zw forms a right-hand system with yw and xw. For all the chambers, zw points away

from the target (see Figure 3-15.

The drift chambers (WC) are placed in the horizontal openings between the coils and

are designed to maximize the acceptance within the geometric constraints [98]. They

cover a polar angle range of 20◦ < θe < 80◦ and azimuthal angle range of −17.5◦ ≤

φe ≤ 17.5◦. Figure 3-16 shows a top-view of the chambers. Each chamber is divided

into individual cells, namely, rectangular arrays of 39 wires with transverse dimensions

4 cm×7.8 cm [99]. There are three kinds of wires in the cells: sense wires, made of tungsten,
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Figure 3-16: Top-view of the drift chambers

connected to amplifier-discriminator cards and used for readout, guard wires, made of

copper, used for gain-matching of the sense wires, and field wires, also made of copper, used

to shape the electric field in the sensitive region. Each chamber contains two superlayers,

and each superlayer contains three layers of sense wires. Each superlayer is a plane,

perpendicular to zw and parallel to the xw-yw plane, where the wires string in an up-and-

down orientation. The wires in the inner superlayers were rotated about the zw direction

by an angle of +5◦ and those in the outer superlayers by −5◦.

High voltages (HV) are applied to the field wires creating an electric gradient toward

the sense wires. The HV on the guard wires are optimized to shape the field between

the sense wires. The sense wires are set at 3850 V. The electric field produced with this

arrangement is shown in Figure 3-17, that resembles two oppositely directed ”jets” for each

sense wire. In the absence of magnetic field, the ionized electrons drift along the electric

field line. In the presence of the toroidal magnetic field, the drift lines are distorted. The
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Figure 3-17: Cell wires.

effect of BLAST magnetic field is studied with a GARFIELD simulation and is included

in Figure 3-18.

The chambers in a sector share a single gas volume. The gas mixture used to operate

the chambers is composed of 82.3% Helium and 17.7% isobutane. helium is used as the

ionization gas, while isobutane is used as a quenching gas in order to absorb photons

created by electron recombination. Careful consideration has to be given to the mixture

of ionization and quenching gas used in the chambers so that there is no reduction of the

tracking efficiency. The entrances of the chambers were composed of two thin sheets of

mylar in order to reduce multiple scattering. The gap between the mylar sheets is purged

with nitrogen to protect phototubes on the adjacent detectors from helium poisoning

[100]. The exit windows have a thicker acryllic window [100]. The reconstruction of

the particle trajectory is performed in two stages: track linking and track fitting. Track

linking contains four steps: hits, stubs, segments and tracks. The track linking is given

in Figure 3-19. First the hits are reconstructed from TDCs with the time-to-distance

conversion functions. The plane parallel to the wires with the minimal sum of square

distances to the hits is called a stub. The two stub planes in the two superlayers within
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Figure 3-18: Drift lines in a cell without (left) and with (right) magnetic field.

a chamber intersect and determine a line segment. The toroidal nature of the BLAST

magnetic field assures that the geometric track of the particle lies in the plane expanded

by the beam line and its initial momentum, and if the magnetic field is approximately

constant, the trajectory of a charged particle is a circle which can be determined by three

degrees of freedom x1, x2 and x3. The circle, known as a track, is parameterized by five

variables (p, θ, φ, z; q), where p is the momentum obtained from the curvature of the circle

and the average magnetic field along the circle, z is the vertex, θ and φ are the polar and

azimuthal direction of the momentum at the vertex and q = ±1 is the charge of the track

deduced from the direction in which the center of the circle lies relative to the track. Track

fitting is also done in two stages: first, all particles are treated as ultra-relativistic due

to lack of timing information, then, once a solution is found, the trajectory is extended

according to the equation of motion to outer detectors. The hits in the TOF, CC, NC are

linked to the drift chamber tracks according to geometric intersections of the tracks and

the detectors.

Kinematic resolution is measured by the over-determined kinematics in elastic H(e, e′p)

and D(e, e′d) reactions. For example, the reconstructed electron momentum pe is com-
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(a) Time-to-distance function calculates the per-
pendicular distance of the track from the wire

(b) Stub-finder determines to which side of each
wire the track passed. 5 different cases of the 8
possibilities are shown

(c) In each chamber, the intersection of two stub
planes forms a line segment

(d) The line segments are linked to form the most
likely tracks

Figure 3-19: Steps of track reconstruction from hits in the drift chambers.

pared to the momentum value calculated from the reconstructed θe, and the standard

deviation is used to measure the tracking resolution. Using the elastic electron-proton

scattering events, the following resolution measures are extracted:

∆pe = pe − pe(θe),

∆φ = φright − φleft − 180◦,

∆z = ze − zp. (3.7)

∆θe
= θp − θe(θp),

∆pp = pp − pp(θe),
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Reconstruction Variable Design Value Measured Value

∆k′ 2% 3%

∆θe 0.30◦ 0.45◦

∆φe 0.50◦ 0.56◦

∆ze 1.0 cm 1.0 cm

Table 3.3: Drift Chamber Reconstruction Resolutions.

Using 130 µm as the intrinsic wire resolution and incorporating Monte Carlo studies of

multiple scattering, the drift chamber reconstruction resolution values used in the inclusive

reaction are given in Table 3.3.

3.3.3 Čerenkov Counters

The Čerenkov counters provide the primary electron/pion particle identification for

BLAST [101].

A charged particle traveling in a medium with a speed greater than the speed of light

in that medium emits Čerenkov radiation. A cone is formed (see Figure 3-20), and its

half-angle θ is given by [102]:

θ = tan−1(

√

n2
v2

c2
− 1) (3.8)

Each counter has silica aerogel (manufactured by Matsushita Electric Works, Ltd.) as

radiator. There are three counters per sector. The most forward counter contains an

aerogel radiator 7 cm thick with an index of refraction n = 1.02, the other counters have

5 cm thick aerogel with n = 1.03. This arrangement is good enough to discriminate

between pions and electrons up to at least 700 MeV/c. Each counter consists of a large

box with diffusely reflective walls to collect the Čerenkov light into properly arranged

photomultiplier tubes (PMTs).

An open counter is shown in Figure 3-21. All the interior surfaces are coated with
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Figure 3-20: Čerenkov radiation.

a white reflective paint specially manufactured for diffusive reflection by Labsphere, Inc.

The most forward counter (small) has six PMTs and covers the range of 20◦ < θe < 35◦,

the next counter (middle) has eight PMTs and covers the range 35◦ < θe < 50◦, while

the last one (big) has twelve PMTs and covers the range 50◦ < θe < 65◦ (see Figure).

All boxes cover the entire azimuthal acceptance of the respective BLAST sector and their

dimensions vary slightly due to the magnetic coil shape. The dimensions of the largest

boxes were 100 cm wide, 150 cm height, and 19 cm deep. Each counter is fed with a laser

pulse for timing and gain monitoring. Some of the technical characteristics of the Čerenkov

counters are summarized in Table 3.4. The photomultipliers are 5-inch diameter fast tubes

Box 1 Box 2 Box 3

Number of PMTs 6 8 12

Angle subtending 20◦ − 35◦ 35◦ − 50◦ 50◦ − 65◦

Aerogel thickness 7cm 5cm 5cm

Refraction index 1.02 1.03 1.03

Table 3.4: Čerenkov counter specifications.
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Figure 3-21: A Čerenkov box (middle size box).

(Photonis type XP4500B). They are ”heavily” shielded against the BLAST magnetic field,

using both two concentric low-carbon steel cylinders, and extra thick iron plates in front

of the coils. To minimize the loss of photons in the entrance region between the box and

the PMT cylinder, a simple aluminum cone with a reflectivity of about 98% has been

mounted.

The photo-electron signal and the average number of PMTs which trigger per event

are used to perform a Monte Carlo simulation of the ADC spectrum for a particular

Čerenkov counter. A Poisson event generator [101] is used to simulate the number of

photo-electrons and their multiplication throughout the dynode stages in a linear focusing

PMT. The Poisson distributed signal takes into account the diminuation of fluctuations

around the mean from the first dynode to the next. This can be expressed by the equation,

σi =



PE ·
n
∏

j=1

gj





1/2

, n = i− 1 (3.9)

where σi is the fluctuation in the distribution of the number of electrons at ith stage, PE

is the mean of the photo-electron distribution and gjs is the gain of the jth stage. The
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ADC spectrum for a particular counter is obtained by doing an event by event sum of

the individual PMT ADCs that trigger an event. A pedestal-subtracted ADC spectrum

produced by the Monte Carlo for a multiplicity of 4 is shown in Figure 3-22, including a

fit with a Poisson distribution. These simulations fit the data for each individual counter.

Figure 3-22: A simulated Čerenkov ADC.

Prior to installation into the BLAST detector, the counters were tested in the

High Bay area of the MIT-Bates laboratory, and their efficiency was above 90% for all

the boxes. Unfortunately, after installation, the huge magnetic field affected it drastically.

Extra ”heavy” shielding was required to decrease the intensity of the field inside the

iron cylinder where the PMT lies. Gain-matching of the PMTs is done in situ using the

electron-proton elastic scattering and monitor all phototubes. In order to compensate for

the high magnetic field, the PMTs are gain-matched at higher voltage values than those

used in the testing facility.
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The efficiency is studied using again elastic ep scattering and the TOF detectors which

are very efficient. In Figure 3-23 the efficiency results are shown as a function of TOF

paddle, where 1 corresponds to the most forward TOF. The red-square represents the

right sector counters, while the blue-diamond, the left sector respectively.

Figure 3-23: Čerenkov counters efficiency as a function of TOF number. Red square shows the
right sector and blue diamond the left sector counters.

The lower efficiency corresponding to TOF number 4, 8 and 12 is caused by geometric

effects: the counters are not 100% covered by the TOFs. Recall that each Čerenkov

counter is ”covered” by four TOFs. The efficiency results for the three counters on each

sector along the box are shown in Figure 3-24. The y−axis (−90◦ to 90◦) represents

the detector length centered in the middle, and the x−axis shows the corresponding TOF

paddle starting from the first most forward (0 in this case). This shows a uniform efficiency

along each individual counter.

3.3.4 Time-of-Flight Scintillators

The time-of-flight scintillators (TOF) are used to obtain timing for the trigger, position

information, and particle identification in coincidence events. There are sixteen TOFs in

each sector, which cover the entire wire chamber geometry, 20◦ < θe < 80◦, and additional
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BLAST Cherenkov Counters Efficiencies

Figure 3-24: Čerenkov counters efficiencies along the box vs. TOF paddle. The left sector counters
are on top, and the right sector on the bottom. The most forward TOF starts from 0.

four backward-angle cover the outside region 80◦ < θe < 120◦. The TOFs are made of

2.5 cm thick Bicron BC-408 scintillator [103]. Properties of BC-408 scintillator are given

in Table 3.5 [104].

The most forward four paddles are each 120 cm tall while the remaining twelve are

180 cm tall. The forward four TOFs are shorter because they are mounted closer to the

beam line, needed to cover the same azimuthal acceptance of wire chamber at forward

angle and have a higher background rate. All but the last four had 10 mil (0.254 mm) of

lead shielding in front of the scintillator material (from X-rays). A photomultiplier tube

(PMT) is mounted on each end of each TOF paddle through Lucite light guides. The

light guides bend the path of light such that the PMTs are mounted with their cylindrical

axis perpendicular to the residual BLAST magnetic field. The TOFs are mounted on

aluminum subframes which could be pulled open to provide space for drift chamber and

target work. A view of the BLAST right sector TOF placement is shown in Figure 3-
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Base Polyvinyltoluene

Refractive Index 1.58

Rise Time (ns) 0.9

Decay Time (ns) 2.1

Pulse Width, FWHM (ns) ∼2.5

Attenuation Length (cm) 210

Peak Wavelength (nm) 425

Table 3.5: Properties of Bicron BC-408 Organic Plastic Scintillator

25. The forward-angle scintillators are labeled with blue stripes, while the rest with red.

Magnetic shielding (Mu-Metal) is placed around each PMT in order to provide shielding

from the residual toroidal magnetic field. Each plastic TOF bar is wrapped in black kapton

for light leaks prevention.

The electronic base for each PMT consists of an actively stabilized voltage divider

supplying the high voltage to the PMT as well as returning the output signal of the PMT

to the data acquisition system. By setting the voltage between the photocathode and the

first dynode with a zener diode, the timing is made independent of the tube gain [103].

The TOF efficiency has been studied with ep-elastic events from hydrogen target runs.

The efficiency of all the TOFs is above 99% [103].

3.3.5 Neutron Detectors

The TOF scintillators are too thin for efficient neutron detection, so a wall of 8 thick

horizontal scintillators is placed behind each detector sub-frame. Because the target spin

is oriented in the left sector of the detector, neutron detection is more important in the

right sector (i.e. perpendicular kinematics) for the extraction of the neutron electric form-

factor Gn
E from a coincidence measurement. Thus extra neutron detectors have been

added to the right sector. The neutron counters consist of two eight-bar walls, known as

Ohio walls, on each sector, plus an additional four Large Acceptance Detectors, LADS,
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Figure 3-25: View of BLAST Right Sector TOFs

walls placed in the right sector from Paul Scherrer Institute (see Figure 3-11 and 3-12).

The farther the position of the NC and LADS walls from the target, the greater

thickness, as well as veto capability from the drift chambers and TOFs, the better the

neutron detection.

3.4 Data Acquisition

The BLAST trigger can be divided into three parts: first, it takes the analog signals

from the detectors as inputs and returns digital logic signals that indicate which elements

of the detectors received hits; second, it correlates the logic signals from the detectors in

each sector; third, it correlates the logic signals from the two sectors.
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3.4.1 First Level Trigger

The signal from each PMT of the Čerenkov counter is sent to a CAEN N407 analog

adder, which adds together all the PMTs’ signals for a box. One copy of the output signal

is sent to the ADC through a delay unit, and the other copy to a single LeCroy Model

3412 leading edge discriminator. The output of the latter one is sent to a LeCroy 4418/32

delay/fanout, and its output to a LeCroy 4532 Pairwise OR unit and to TDCs and VME

scalers.

The PMT signals from the TOFs (32) are fed into a splitter (custom built). One

copy is sent to the ADCs, and the other to two LeCroy Model 3420 constant fraction

discriminators (CFD), one for the top 16 and the other for the bottom 16 PMTs. The

signals from the CFDs are then sent to an adjacent LeCroy Model 4418/4518 delay/fanout:

one set of output signals from the fanout is sent to the TDCs and to the VME scalers for

visualization, while the second set of output signals is sent to a LeCroy Model 4516 logic

module where each pair of top and bottom PMT signals are ANDed together (coincidence

of top-bottom PMTs); this eliminates many counterfeit signals from the trigger. The

output of the coincidence logic is sent to another Model 4418/4518 delay/fanout to allow

for equalization of signal timing between different scintillators. The output from this

fanout is sent to the scalers and to the next sector logic. The signals are numbered 1-16

from small to large angles.

The electronics for the neutron counters are custom built and follow the same routine:

a discriminator, then a logic AND, then a logic OR. A copy is sent to the ADCs before

the discriminator, and one to the TDCs after it. Also copies are sent to the scaler from

both the discriminator and logic AND.

Software-controllable LeCroy Model 2373 memory lookup units (MLUs) are used to

correlate the signals from the various detectors. There is one for each sector. In order
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bit no. input signal

0-3 single TOFs no. 1-4

4-9 paired TOFs no. 5-16

10 ORed BATs

11 ORed Čerenkov

15 ORed Neutrons

Table 3.6: The sector MLU input bits assignment.

for the MLUs to function at a reasonable rate, it is necessary to reduce the number of

inputs which must be processed. Channel reduction is carried out in two logic modules:

a LeCroy 4532 Majority Logic Unit is used in its secondary mode as a fast pairwise OR

for the Čerenkov counters and for the 12 large angle TOF scintillators (number 5 to 16)

that are paired into 6 logical signals. The loss in resolution is acceptable since event rates

are slower at large angles. A LeCroy 4564 OR module is used to perform the remaining

channel reduction.

Table 3.6 shows the assigned bits for the corresponding input signals:

The final section of the trigger takes the output of the two sector MLUs as an input

and sends gates and start signals to the digitization electronics. This is accomplished by

another LeCroy Model 2373 memory lookup unit (MLU), called the cross-sector MLU

(XMLU). The first six output bits from the right and left sector MLUs are mapped to

input bits 0-5 and 6-11 of the cross-sector MLU, respectively. Bit number 14 is assigned

to the flasher, the laser used to calibrate and monitor the TOFs, CCs and NCs.

The BLAST trigger diagram is shown in Figure 3-26.

3.4.2 Trigger Types

BLAST experiment has been designed to collect data for various reaction channels simul-

taneously. Table 3.7 summarizes the trigger types, their corresponding bits in the XMLU,
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Figure 3-26: BLAST Trigger Electronics.
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bit trigger label purpose scale configuration

0 1 coinc (e, e’p) 1 1 TOF in each sector
(e, e’d)

1 2 neutron (e, e’n) 1,2 1 TOF in one sector, NC in the other

2 3 pion (e, e’π±) 10 2 TOF in one sector with CC

3 4 double (calib) 100 2 TOF in one sector

4 5 bats (e, e’p) 1 1 TOF in one sector, BATS in the other

5 6 singles (calib) 1000 1 TOF ≥ 12 in one sector

6 7 singles (e, e’) 9 1 TOF in one sector with CC

7 8 flasher (calib) 1 flasher diode trigger

Table 3.7: BLAST trigger types assigned to XMLU bits.

and their description.

3.4.3 Second Level Trigger

In order to clean up the data, the second level trigger of the trigger supervisor has

been used. This trigger requires a good WC hit, that is a hit in the inner, middle and

outer chamber within a sector. A TTL output for a good WC hit is converted to a NIM

signal and is passed to a NIM AND module with a first level trigger signal from the trigger

supervisor (TS). The second level trigger reduces the recorded event rate by a factor of

ten [78]. This allows the stored beam to be increased giving higher luminosity.

3.4.4 Data Acquisition Software

The CEBAF Online Data Acquisition (CODA) software [105] was used to record the

data for the BLAST experiment. CODA allows various data acquisition systems to be

built. For the BLAST program, the readout controllers (ROCs) collected the data in a

buffer to reduce protocol overhead before sending it over the network. The various data

streams are recorded, merged, and formatted by the Event Builder (EB). The EB sends

the data to the Event Transport (ET) system which allows for other data streams (e.g.
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scaler or EPICS data) to be added to the physics data. Then an event recorder (ER)

function stores the data in the required format and location. The BLAST CODA uses

information stored in an MySql database [103].

Scaler information for each trigger type is compared with the recorded data stream

from CODA in order to check that the dead time is trigger independent. No significant

variations were found.

In order to ensure that the time of flight of electrons is independent of the individual

TOF paddle, and of the position along the detector, a CAEN C561 meantimer (MT) and

a LeCroy 4564 OR module are added to the TOFs electronics: an extra output copy from

the LeCroy Model 4418/4518 delay/fanout is fed to the meantimer and its output is sent to

the logical OR unit. These delays are adjusted to compensate for TOF timing differences

using a common start paddle temporarily placed adjacent to the wire chambers. LeCroy

4564 OR module provides the common strobe for the trigger supervisor (TS).

In the case of the inclusive scattering reaction, all of the BLAST detectors are used

(see section 4.1.3).

For additional information regarding the BLAST experiment and its individual com-

ponents see [89, 99, 106, 107, 108, 103, 109].
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CHAPTER 4

Data Analysis

Data analysis for the inclusive scattering of polarized electrons from polarized protons

is presented in this chapter. This includes the selection of the inclusive events (section 4.1)

at BLAST, the experimental background contributions and corrections (section 4.2), the

effect of radiative corrections (section 4.3) and the Monte Carlo simulations at BLAST

(section 4.4).

The data for the inclusive scattering were taken during October-December 2004 and a

summary is presented in Table 4.1. The list of run numbers for the above period includes

Running Period October-December 2004

Run Numbers 12184-13266

Beam Charge 287kC

Beam Polarization 0.65

Target Length 60 cm

Target Thickness 4.9 × 1013 cm−2

Target Polarization 0.80

Target Spin Angle 48.84◦

BLAST Polarity nominal (electrons inbending)

Table 4.1: Beam, target, and spectrometer conditions for the data taking period of ~p(~e, e′) with
the ABS H2 target.

the empty-target (i.e. no gas) runs as well, that were taken over the entire BLAST

production data taking, with the purpose of background studies (see section 4.2).
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4.1 Inclusive Scattering Events

The inclusive scattering of polarized electrons from polarized protons is defined in

terms of outgoing reaction products as the measuring of scattered electrons only. With

BLAST, the outgoing electrons is detected in each sector simultaneously, and from these

measurements the sector-asymmetries are extracted, from which we extract the correlation

parameters, ATT ′ and ATL′ .

The main goal of this analysis is to measure the scattered electrons accurately. This

is explain in detail in this section.

4.1.1 Event Reconstruction

From the drift chamber information we extract the momentum, p ≡ ~k′, polar scattering

angle, θe, and azimuthal scattering angle, φe of the outgoing electron 1. All other physics

observables are calculated from these three quantities.

A particle of mass m and charge q moving in a magnetic field B with a velocity v

experiences a force qv × B. The bending radius of the particle’s trajectory is given by:

r =
p

qB
, p = m|v| (4.1)

In the drift chambers, three stubs are linked to form a track, which is approximately

circular and obeys the above formula. Then a fitter is used to calculate particle momentum

from the radius of the track. Because of the noise, there are many stubs, hence many

segments and thus candidate tracks are associated with the same physical track. In order

to reduce these tracks, only the best candidates are kept at each stage of the reconstruction.

In the track fitter, all these tracks are iterated together, then at every few iterations, the

bad tracks are discarded. At this step, the reconstruction takes into account the missing

1we dropped the prime index for outgoing electron in the scattering angles, i.e. θe ≡ θe′ , φe ≡ φe′
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stubs, due to inefficient wires or bad readout cards.

The fitter uses a Newton-Raphson algorithm [110] that searches in the parameter space

(p, θ, φ, z) for the root of the equation:

x(t) − p(p, θ, φ, z; q) = 0 (4.2)

where q is the particle’s charge, x(t) is up to an 18-dimension vector whose components

are the wire chamber hit positions, that are measured from the WC TDC. The function

p(p, θ, φ, z; q) represents the vector whose components are the positions where a track with

charge q, momentum (p, θ, φ) originated from (0, 0, z) intersects the wire planes 2. Note

that, the x and y vertex coordinates are set to 0, because beam position is well known

compared to the track resolution.

Figure 4-1 outlines the steps involved in the track fitting. In order to find p(p, θ, φ, z; q)

we numerically integrate the equation of motion of the charge particle in the magnetic field,

and locate the intersection with each of the 18 wire planes. The reconstruction is slightly

modified from the Newton-Rhapson method, which computes the least-square inverse of

the Jacobian [110, 106] J = df/dp, defined by J⊣ ≡
(

JT J
)−1

JT , where x = f(p), while

we compute the root directly. Compared to conventional χ2 minimization methods, the

root finding algorithm is more robust against local minima by preserving the directional

information.

4.1.2 Standard Cuts

The basic cuts used in the inclusive electron scattering, ~p(~e, e′), depend on the detector

acceptance and are based on background contribution corrections (see section 4.2), trigger

event selection (see section 4.1.3), target holding field efficiency (see subsection 3.2.2, and

2there are 2 superlayers for each chamber, each containing three sensing wires; since there are 3 chambers
per sector, results in 18 sense wires
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dx is the deviation of the simulated track from the
wire hits.

Figure 4-1: Newton-Rhapson method applied to track fitting.

on detector in-plane and out-of-plane limitations. They are summarized in Table 4.2, and

throughout this work they are referred as the standard cuts.

The limitation in energy, Ee′ > 0.25GeV , is due to the background effects in the ∆

region from low energy scattered electrons; θe and φe ranges cover the acceptance of the

Čerenkov counters, and the target position cut is based on the holding field magnet length,

which covers only 40cm out of 60cm of the target cell. All physics triggers are used (see

Table 3.7). Since only trigger no. 7 uses Čerenkov hits, a Čerenkov hit cut is added in

the analysis, because CC is the only detector at BLAST that can differentiate between

electrons and pions up to 0.7GeV .
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Name Symbol Cut (Accepted range)

Energy Ee′ 0.25GeV < Ee′ < 0.85GeV

In-plane angle θe 22◦ < θe < 65◦

Out-of-plane angle φe −17.5◦ < φe < +17.5◦

Vertex position Ztarget −20 cm < Ztarget < +20 cm

Trigger trig trig = 1, 2, 3, 7

Charge q q = −1

Detector hit N/A WC, CC, TOF

Table 4.2: Standard cuts for ~p(~e, e′) reaction.

Trigger Purpose Other Reactions

1 (e, e’p) (e, e’p)π0, (e, e’π+)n

2 (e, e’n) (e, e’π0)p

3 (e, e’π±) (e, e’p)π0

7 (e, e’) all of the above

Table 4.3: BLAST trigger types and their detected reaction channels for the ABS H2 target.

4.1.3 Trigger Selection

The inclusive electron scattering cross section is an incoherent sum of the multipoles,

while the exclusive (coincidence) cross section contains information on the relative phases

of the multipoles [1], hence, in the case of ~p(~e, e′) reaction, we detect the scattered electrons

in one sector, while the other reaction products could or could not be in the acceptance

of the detector. This is shown schematically in Figure 4-2.

The trigger types are shown in Table 3.7. Due to trigger and detector inefficiencies,

besides the desired reactions, some other reaction channels are detected in each of these

individual triggers. This is shown in Table 4.3.

For the inclusive reaction studies, all physics triggers (no. 1, 2, 3, and 7) 3 are used to

3BATs detectors are the most backward (last 4) TOFs. They are used in trigger no. 5 and are not
of interest in the inclusive scattering, since they cover a square momentum transfer of 0.6GeV 2 < Q2 <
0.9GeV 2, and this region is outside of the interest region, and has very few events.
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Figure 4-2: BLAST detector front/rear view (schematic). In the case of ~p(~e, e′) reaction, an
electron is detected in one sector (green), while the other reaction products could be anywhere
(red).

collect the data for ~p(~e, e′) reaction. The trigger prescaling factor is applied in the analysis

only to the trigger type 7 (no. 7), for the reasons discussed bellow.

The trigger supervisor (TS) assigns the event type according to the lowest set bit (see

Table 3.7 for the description of the bit assignment to the cross sector memory lookup

unit, XMLU), that is, for example, if an event type qualifies for both trigger 1 and 2, it

is assigned to trigger no. 1. In the case of a trigger type which is prescaled (trigger 2, 3

and 7) 4, things are a bit different: for example, if an event is of type 3, it is not assigned

to trigger type 3, unless has happened 9 times before (10 is the prescale factor for trigger

type 3), and if this event is not assigned to any other trigger type, it goes to trigger type

7 if it qualifies (i.e. if it has a Čerenkov hit), which, in turn, is prescaled by a factor of 9,

hence if the event has not happened for 8 times before, it is discharged. The prescaling

factors have been introduced to the corresponding triggers for the purpose of reducing the

background rates and not exceeding the data acquisition maximum rate [78, 111].

4trigger no. 2 has been prescaled by 2 for December 2004 runs only 13001-13266.
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4.1.4 Momentum Corrections

In order to account for the reconstruction errors, corrections to the electron momentum

are required. Several methods are used to determine these corrections [112, 113].

One method uses the 2 ~H(~e, e′p) reaction. For a series of bins over the desired Q2

range, the reconstructed electron momentum is compared with its respective Monte Carlo

momentum plots. In each Q2 bin, the quasi-elastic electron momentum peak in the data

is multiplied by a correction factor, fe(Q
2), in order to make it to coincide with the Monte

Carlo electron momentum peak:

pe(Q
2)|MC peak = fe(Q

2) × pe(Q
2)|Data peak (4.3)

From these correction factors, a polynomial of best-fit is constructed and used in the data.

Another method uses the elastic ~H(~e, e′p) reaction, and the same comparison, and Q2

is calculated from the electron scattering angle, θe, since it has a better resolution compare

to the reconstructed momentum, Ee′ .

The results from the two methods agree pretty well, i.e. < 1%. The corrections for

the left sector are on the order of 3% to 5%, and for the right sector on the order of 2%

to 8%.

4.1.5 Observables

In subsection 4.1.1 we describe the event reconstruction. From the drift chamber

information we reconstruct the energy of the scattered electron, Ee′ , its in-plane (polar)

scattering angle, θe, and out-of-plane (azimuthal) scattering angle, φe. In the relativistic

limit, Ee, Ee′ ≫ me, we have

Ee ≈ |~k|, Ee′ ≈ |~k′| (4.4)
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From these three quantities, Ee′ , θe, φe we reconstruct all the other physics quantities of

interest for the inclusive scattering reaction.

If we denote the initial electron four-momentum by K = (Ee, ~k), the final electron

four-momentum by K ′ = (Ee′ , ~k
′), and the four-momentum transfer by q = (ω,~q), using

the conservation of the energy and momentum at the leptonic vertex (e → γ∗ + e′), we

have

K = K ′ + q ≡











Ee = Ee′ + ω

~k = ~k′ + ~q
(4.5)

The squared momentum transfer in the relativistic limit (4.4) can be written in terms

of Ee′ and θe as 5

q2 = (K −K ′)2 = 2m2
e − 2K ·K ′ ≈ −2K ·K ′

= −2Ee′Ee + 2k′ · k = −2Ee′Ee(1 − cos θe)

= −4EeEe′ sin
2 θe

2
= −Q2 (4.6)

where θe is the angle between the incoming and outgoing electron trajectories, k, k′, and

Figure 4-3: Electron (lepton) vertex: momentum conservation.

5if not specified otherwise, all variables are expressed in the laboratory frame, and ~k ≡ k, ~k′ ≡ k′.
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θq is the angle between the incoming electron trajectory, k, and the photon momentum,

q, (see Figure 4-3).

Since the incoming electron path defines the 0z axis (see Figure 2-2 and Appendix B

for the description of the BLAST laboratory frame), we can deduce the following relations:

|q| cos θq + |k′| cos θe = |k|

|q| sin θq = −|k′| sin θe. (4.7)

From 4.7 we obtain θq as a function of q, where q in the relativistic limit (4.4) is given by

|q|2 = E2
e + E2

e′ − 2EeEe′ cos θe (4.8)

Using 4.6, 4.8 and q2 = ω2 − q2, we get (energy conservation):

ω = Ee − Ee′ . (4.9)

Ignoring the lepton ”leg”, the total 4-momentum of the reaction γ∗ + N → N ′ + π

expressed in the Mandelstam variable s, can be written, under the assumption that the

target nucleon (proton) is at rest in the laboratory frame, and using the convention from

Figure 4-4, as

s = W 2 = (q + P )2 = M2
N + q2 + 2MNω = M2

N −Q2 + 2MNω (4.10)

from which we get the following relation for ω,

ω =
W 2 − q2 −M2

N

2MN
. (4.11)

where MN = Mp is the proton mass.
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Figure 4-4: Lepton and hadron vertices notation.

In the relativistic limit (4.4), the invariant mass can be expressed in terms of Ee′ and

θe as

W 2 = (q + P )2 = (K −K ′ + P )2

= (Ee − Ee′ +Mp)
2 − (k − k′)2

= (Ee − Ee′ +Mp)
2 − E2

e − E2
e′ + 2EeEe′ cos θe (4.12)

The angles θ∗ and φ∗ of the target (proton) spin angle in the q-system, defined by ux,

uy and uz = q (see Figure 2-2) are given by

cos θ∗ = − sin θT cosφe sin θq + cos θT cos θq (4.13)

cosφ∗ =
sin θT cosφe cos θq + cos θT sin θq

sin θ∗
(4.14)

where θT is the target spin angle in the laboratory frame.

The description of the BLAST laboratory frame and target spin angles, θ∗ and φ∗ is

given in Appendix B. Figures 4-5, 4-6, 4-7, 4-8, 4-9, 4-10, 4-11, 4-12, 4-13, 4-14, 4-15,

4-16, 4-19, 4-20, 4-18, 4-18, show these observables for each individual trigger type 1, 2, 3,

and 7, using the standard cuts (subsection 4.1.2) for the ABS hydrogen data mentioned

in Table 4.1. For the inclusive analysis these are ”summed” up, and, as mentioned earlier,

the data are prescaled by a factor of 9, only for trigger type 7.
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Figure 4-5: Distribution of Ee′ [GeV ] for each trigger type (1, 2, 3, 7) for ABS hydrogen data. Left
sector is on the left, right sector on the right.
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Figure 4-6: Distribution of θe [◦] for each trigger type (1, 2, 3, 7) for ABS hydrogen data. Left
sector is on the left, right sector on the right.
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Figure 4-7: Distribution of φe [◦] for each trigger type (1, 2, 3, 7) for ABS hydrogen data. Left
sector is on the left, right sector on the right.
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Figure 4-8: Distribution of θq [◦] for each trigger type (1, 2, 3, 7) for ABS hydrogen data. Left
sector is on the left, right sector on the right.
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Figure 4-9: Distribution of θ∗ [◦] for each trigger type (1, 2, 3, 7) for ABS hydrogen data. Left
sector is on the left, right sector on the right.
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Figure 4-11: Q2 [GeV 2] vs. W [GeV ] for each trigger type (1, 2, 3, 7) for ABS hydrogen data. Left
sector is on the left, right sector on the right.
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Figure 4-12: Q2 [GeV 2] vs. θq [◦] for each trigger type (1, 2, 3, 7) for ABS hydrogen data. Left
sector is on the left, right sector on the right.

81



50 60 70 80 90 100 110 120 130 140 150
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

500

1000

1500

2000

2500

3000

: 1L
*θ vs. L

2Q

-10 0 10 20 30 40 50
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

200

400

600

800

1000

1200

1400

1600

1800

2000
: 1R

*θ vs. R
2Q

50 60 70 80 90 100 110 120 130 140 150
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

10

20

30

40

50

60: 2L
*θ vs. L

2Q

-10 0 10 20 30 40 50
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

2

4

6

8

10

12

14
: 2R

*θ vs. R
2Q

50 60 70 80 90 100 110 120 130 140 150
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5: 3L
*θ vs. L

2Q

-10 0 10 20 30 40 50
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

1

2

3

4

5

6: 3R
*θ vs. R

2Q

50 60 70 80 90 100 110 120 130 140 150
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

10

20

30

40

50

60

70: 7L
*θ vs. L

2Q

-10 0 10 20 30 40 50
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

10

20

30

40

50: 7R
*θ vs. R

2Q

 for Trigger 1, 2, 3, 7*θ vs. 2Q

Figure 4-13: Q2 [GeV 2] vs. θ∗ [◦] for each trigger type (1, 2, 3, 7) for ABS hydrogen data. Left
sector is on the left, right sector on the right.
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Figure 4-14: W [GeV ] vs. Ee′ [GeV ] for each trigger type (1, 2, 3, 7) for ABS hydrogen data. Left
sector is on the left, right sector on the right.
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Figure 4-15: W [GeV ] vs. θ∗ [◦] for each trigger type (1, 2, 3, 7) for ABS hydrogen data. Left
sector is on the left, right sector on the right.
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Figure 4-16: W [GeV ] vs. x for each trigger type (1, 2, 3, 7) for ABS hydrogen data. Left sector
is on the left, right sector on the right.
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4.2 Background Contributions

The standard cuts (subsection 4.1.2) used for electron identification, do not suffice to

eliminate all the background contributions. The majority of the background events arise

through the electron scattering from metallic surfaces in the vicinity of the target and

target walls, which are made of Aluminum.

Background contributions are relatively low in the elastic scattering region (W ∈

[0.8, 1.0]GeV ), whereas they are considerably larger in the ∆-region, more precisely above

one-pion production threshold (W ∈ [1.07, 1.4]GeV ), hence for the asymmetries these

contributions have to be taken into account.

In order to determine these contributions, measurements with the empty target cell are

taken under the same conditions as the real data, from time to time, especially when the

ABS target noozle needs to be cooled off. A total of 32 kC of empty target cell runs have

been gathered during 2004 for inclusive scattering background studies. In Figures 4-21,

4-22, 4-23, 4-24 we show the results of the empty target cell runs, in green, compare to

the data runs in blue, and scaled to the corresponding charge (see Table 4.1).

If we assume that the background contribution is not spin dependent because only the

hydrogen is polarized, that is

N++
empty

Q++
empty

=
N−−

empty

Q−−
empty

=
N+−

empty

Q+−
empty

=
N−+

empty

Q−+
empty

(4.15)

Under this assumption, the measured asymmetry can be written as

Ameas =
R+ −R−

R+ +R− × R+ +R−

R+ +R− − 4Rempty
(4.16)

= Auncor × fdil

The measured spin-dependent rates, R+, R−, and the spin-independent empty target cell
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Figure 4-21: Rates of W [GeV ] for each trigger type (1, 2, 3, 7) and for Q2 ∈ [0.05, 0.35]GeV 2.
Data runs are in blue, empty runs in green. Left sector is on the left, right sector on the right.
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Figure 4-22: Rates of Q2 [GeV 2] for each trigger type (1, 2, 3, 7). Data runs are in blue, empty
runs in green. Left sector is on the left, right sector on the right.
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Figure 4-23: Rates of Q2 [GeV 2] for each trigger type (1, 2, 3, 7) in the ∆ region (1.1 < W <
1.4 (GeV )). Data runs are in blue, empty runs in green. Left sector is on the left, right sector on
the right.
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Figure 4-24: Rates of x for each trigger type (1, 2, 3, 7) in the ∆ region (1.1 < W < 1.4 (GeV )).
Data runs are in blue, empty runs in green. Left sector is on the left, right sector on the right.
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rate, Rempty, are given by

R+ =
N++

Q++
+
N−−

Q−−

R− =
N+−

Q+− +
N−+

Q−+
(4.17)

Rempty =
Nempty

Qempty

where N±± represents the number of events, and Q±± is the charge for each spin-state

combination for the ABS hydrogen data, the first ± sign represents the electron helicity

(spin projection parallel (+) or anti-parallel (−) to its momentum), and the second ±

sign represents the spin orientation of the target nucleon, i.e. proton (parallel (+) or

anti-parallel (−) to the magnetic holding field); Nempty is the number of events, and

Qempty = 32 kC is the total charge for the empty target data.

Figures 4-25, 4-26, 4-27, 4-28, 4-29, 4-30, 4-31, 4-32, 4-33, 4-34, 4-35 show almost the

same observables as in 4.1.5 for each individual trigger type 1, 2, 3, and 7, but for the

empty target cell runs. Recall that for the inclusive analysis these are ”summed” up, and,

as mention earlier, the data are prescaled by a factor of 9, only for trigger type 7.

Since most of the background events arise from the low-momentum scattered electrons

as one can see from the empty target observables, the cut Ee′ > 0.25GeV has been

applied (see Table 4.2). This cut drops the invariant mass, W , spectrum at high values

(see Figure 4-21).

4.2.1 Beam blow-up Factor

The measurement of the empty target background is not sufficient to estimate the

real background during data taken. When gas is inserted into the target, the background

rates are likely to change (increase) due to the transverse emittance blow-up of the beam,

caused by interactions of the beam with the target gas [114]. This beam blow-up effect
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Figure 4-25: Distribution of Ee′ [GeV ] for each trigger type (1, 2, 3, 7) for empty target data. Left
sector is on the left, right sector on the right.
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Figure 4-26: Distribution of θe [◦] for each trigger type (1, 2, 3, 7) for empty target data. Left
sector is on the left, right sector on the right.
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Figure 4-27: Distribution of φe [◦] for each trigger type (1, 2, 3, 7) for empty target data. Left
sector is on the left, right sector on the right.
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Figure 4-28: Distribution of θq [◦] for each trigger type (1, 2, 3, 7) for empty target data. Left
sector is on the left, right sector on the right.
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Figure 4-29: Distribution of Ztarget [cm] for empty target data. Left sector is on top, right sector
on the bottom.
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Figure 4-30: Q2 [GeV 2] vs. W [GeV ] for each trigger type (1, 2, 3, 7) for empty target data. Left
sector is on the left, right sector on the right.
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Figure 4-31: Q2 [GeV 2] vs. θq [◦] for each trigger type (1, 2, 3, 7) for empty target data. Left
sector is on the left, right sector on the right.
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Figure 4-32: Q2 [GeV 2] vs. Ztarget [cm] for each trigger type (1, 2, 3, 7) for empty target data.
Left sector is on the left, right sector on the right.
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Figure 4-33: W [GeV ] vs. Ee′ [GeV ] for each trigger type (1, 2, 3, 7) for empty target data. Left
sector is on the left, right sector on the right.
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Figure 4-34: W [GeV ] vs. θ∗ [◦] for each trigger type (1, 2, 3, 7) for empty target data. Left sector
is on the left, right sector on the right.

96



-60 -40 -20 0 20 40 60
0.8

0.9

1

1.1

1.2

1.3

1.4

0

1

2

3

4

5

6

7: 1L vs. ZLW

-60 -40 -20 0 20 40 60
0.8

0.9

1

1.1

1.2

1.3

1.4

0

2

4

6

8

10

: 1R vs. ZRW

-60 -40 -20 0 20 40 60
0.8

0.9

1

1.1

1.2

1.3

1.4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5: 2L vs. ZLW

-60 -40 -20 0 20 40 60
0.8

0.9

1

1.1

1.2

1.3

1.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2: 2R vs. ZRW

-60 -40 -20 0 20 40 60
0.8

0.9

1

1.1

1.2

1.3

1.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1: 3L vs. ZLW

-60 -40 -20 0 20 40 60
0.8

0.9

1

1.1

1.2

1.3

1.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2: 3R vs. ZRW

-60 -40 -20 0 20 40 60
0.8

0.9

1

1.1

1.2

1.3

1.4

0

2

4

6

8

10

12: 7L vs. ZLW

-60 -40 -20 0 20 40 60
0.8

0.9

1

1.1

1.2

1.3

1.4

0

1

2

3

4

5

6

7

8

9

10: 7R vs. ZRW

 for Trigger 1, 2, 3, 7targetW vs. Z

Figure 4-35: W [GeV ] vs. Ztarget [cm] for each trigger type (1, 2, 3, 7) for empty target data. Left
sector is on the left, right sector on the right.

was quantified at BLAST through the (e, e′n) reaction channel [89]. Since there are no

neutrons in the hydrogen target, this channel measures strictly the background. The beam

blow-up is defined as the ratio of the (e, e′n) for the hydrogen target yields over the empty

target yields for the (e, e′n) reaction:

fblowup =
Y n

H

Y n
empty

(4.18)

with Y n
H being the yields for (e, e′n) reaction with the ABS hydrogen target, and Y n

empty

the yields (e, e′n) reaction with the empty target cell.

This factor has been found to be fblowup ≈ 1.05 [89, 106, 108]. Since the beam blow-

up effect should be the same for both sectors, in the case of the ratio measurements

(asymmetry), the beam blow-up is not a significant factor, because it cancels out in the

asymmetry, provided backgrounds are subtracted correctly.

97



4.2.2 False Asymmetries

Additional investigation is obtained from the beam only and target only asymmetries,

which in the case of the inclusive electron scattering are expected to be zero, due to the

vanishing of the TT ′- and TL′-terms in the calculation of the cross section (Equation 2.33).

These asymmetries are independent measurements of the false asymmetries. They are

obtained by replacing the spin-dependent rates, R+, R−, in Equation 4.16 with

BEAM : R+ =
N++

Q++
+
N+−

Q+− , R− =
N−−

Q−− +
N−+

Q−+
(4.19)

TARGET : R+ =
N++

Q++
+
N−+

Q−+
, R− =

N−−

Q−− +
N+−

Q+− (4.20)

The beam and target asymmetries are given in Figures 4-36 and 4-37.
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Figure 4-36: Beam asymmetry for left (left) and right (right) sectors.

All false asymmetries are observed to be small and consistent with zero. The contri-

bution to the uncertainty errors in the asymmetry due to the false asymmetries is thus
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Figure 4-37: Target asymmetry for left (left) and right (right) sectors.

small, but they still enter in the systematic errors for this analysis.

4.3 Radiative Corrections

4.3.1 Introduction

When electrons are scattered from protons, or in the field of the nucleus, they can

accelerate or decelerate. This causes the electrons to emit real photons, and the process is

called bremsstrahlung [115]. These radiative events accompany all processes with charged

particle scattering, but are more prevalent for relativistic energies. Besides contributions

from the usual Born process, experimental data on lepton-nucleon scattering contain con-

tributions from QED radiative effects [116, 117]. These effects have to be taken into

account in the BLAST Monte Carlo simulator, by generating the radiated photons.

In the case of inclusive scattering of electrons from protons, depending on the four-
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momentum transfer, Q2, and the energy transfer, ω 6, there are two basic channels: elastic

and inelastic. In the case of the elastic scattering, ω = Q2/2Mp, the electron is scattered

off the proton, leaving the proton in its ground state, while inelastic scattering occurs

when the pion production threshold is reached, ω ≥ Q2/2Mp +mπ, leaving the proton in

an excited state. Due to limitation of energy at BLAST, the proton is in its first excited

state, namely ∆+(1232MeV ). In Table 4.4 the basic properties of the ∆+ are listed.

Particle Symbol Makeup Rest Mass Spin Lifetime Decay Modes
MeV/c2 (seconds) %

Delta ∆+ uud 1232 3
2 0.6 × 10−23 p+ π0(66.6)

n+ π+(33.3)

Table 4.4: Basic properties of ∆+

At the Born level both Q2 and ω are fixed by measuring the scattered elecron momen-

tum and in-plane angle, while at the level of radiative corrections, in case of the presence

of the radiated photon, this constraint is removed, hence the four-momentum of the ra-

diated photon has to be included into the kinematics calculations. The unpolarized and

polarized observed cross section can be written as [118]

σu,p
obs = (1 + δ) σu,p

0 + σu,p
RC (4.21)

where both the factorized correction, δ, and the unfactorized cross section, σu,p
RC , come

from the bremsstrahlung process contribute to the cross section. In the case of BLAST,

where the polarization asymmetries are measured, the factorized part of the cross section

has tendency to cancel out, but the unfactorized part could give important contributions.

These contributions come from:

6In some papers this is denoted by ν = Ee − Ee′ ≡ ω
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• hard radiation.

• higher order corrections.

• box-type diagrams.

The first two are called model independent corrections, since they do not depend on nu-

clear interactions. The third is called model dependent because it takes into account

the two-photon exchange graphs that require additional assumptions. The calculation of

radiative effects for the model dependent correction necessitates additional information

about the hadron interaction. Hence it has extra theoretical uncertainities, which cannot

be controlled. In this work we consider only the model independent correction.

There are two methods to calculate model independent corrections. Mo and Tsai

[119] introduced an artificial parameter which separates the momentum phase space into

soft and hard parts. The soft part is performed in the soft photon approximation, when

the photon energy is considered small compared to the all momenta and masses in the

system, but it cannot be chosen too small, because of the numerical instabilities that

occur in the hard part. This artificial parameter is a disadvantage for correct radiative

effects calculations. Bardin and Shumeiko [120] developed an approach of extraction

and cancellation of the infrared divergence without introducing this artificial parameter.

Almost all of the recent work in calculating the radiative effects has used this approach.

4.3.2 Radiative Effects in Elastic Electron-Proton Scattering

In order to describe the phase space of the radiative process

e(K) + p(P ) → e′(K ′) + p′(P ′) + γ(Kγ) (4.22)

besides the squared momentum transfer, Q2, and azimuthal angle, φe, three new kinematic

variables have to be considered, namely, the proton transfer momentum squared, t =

101



−(K −K ′ −Kγ)2, the inelasticity, v = (P ′ +Kγ)2 −M2
p , and the azimuthal angle, φK ,

between the planes (q,k) and (k,k′). This set of variables defines the four-vectors of all

final particles in any frame.

The separation of the scattering process into the radiative and non-radiative parts

requires an additional parameter to be introduced, which is normally associated with the

photon resolution in the detector, denoted by vmin, and is called minimal inelasticity. The

contributions to the observed cross section are shown in Figure 4-38. The observed cross

section can be written as [121]

σobs = σnon−rad(vmin) + σrad(vmin) (4.23)

where the non-radiative part of the cross section, σnon−rad, includes the Born cross

Figure 4-38: Feynman diagrams contributing to the observed cross section in elastic electron-proton
scattering.

section, σ0 (Figure 4-38(a)), as well as loop effects (Figure 4-38(b, c)), plus the soft photon

radiation (v < vmin), and the radiative part contains the radiated photon contributions

from Figure 4-38(d, e). These cross sections can be written as [118, 121]

σnon−rad(vmin) = σ0e
δinf (1 + δV R + δvac+ δadd(vmin)) + σadd

R (vmin) (4.24)
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σrad(vmin) = − α3

2S2

∫ t2

t1

dt
∑

i

Fi(t)

t2
Θi(t) (4.25)

where

σ0 =
2πα2

S2Q4

∑

i

θB
i Fi(Q

2) (4.26)

δV R =
α

π

(3

2
log

Q2

me
− 2 − 1

2
log2 S

S −Q2

+ Li2

(

1 −
M2

pQ
2

S(S −Q2)

)

− π2

6

)

(4.27)

δvac = δlepton
vac + δhadron

vac (4.28)

δinf =
α

π
(lm − 1) log

vmax

S(S −Q2)
(4.29)

δadd(vmin) =
2α

π
log

(

vmax

vmin

)[

1 − log

(

Q2

m2
e

)]

(4.30)

σadd
R (vmin) = − α3

2S2

∫ t′
2

t′
1

dt
∑

i

(

θi
Fi(t)

t2
− 4θB

i FIR
Fi(Q

2)

Q4

)

(4.31)

FIR =

(

K

2KKγ
− K ′

2K ′Kγ

)2

(4.32)

Θi(t) =

∫ vmax

v1

dvθi(t, v) =

∫ vmax

v1

dv

∫ 2π

0
dφKθi(t, v, φK) (4.33)

v1 = max



vmin,
(t−Q2)(

√
t∓

√

4M2
P + t)

s
√
t



 (4.34)

v2 = vmax = S −Q2 −
M2

pQ
2

S
(4.35)

t1,2 =
2M2

pQ
2 + vmax

(

Q2 + vmax ∓
√
λ
)

2(M2
p + vmax)

(4.36)

λ = (Q2 + vmax)2 + 4M2
pQ

2 (4.37)

t′1,2 = t1,2(vmax → vmin) (4.38)

and S = 2KP , v = (P + K − K ′)2 −M2
p , lm = log(Q2/m2

e), Li2 =
∫ x
0 dy ln(1 − y)/y

is the dilogarithm or Spence function, Fi(t) are the squared combinations of the electric

and magnetic elastic form factors, and θi and θB
i are analytical functions [118, 116] of
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kinematic invariants for the radiative and Born subprocesses, respectively. The index i

takes into account both the unpolarized part, i = 1, 2, and the polarized part, i = 3, 4.

For the radiative effects calculations in the elastic electron-proton scattering, the code

MASCARAD [122] is used, based on the calculations mentioned above.

4.3.3 Radiative Effects in Inelastic Electron-Proton Scattering

For the case of electron-proton inelastic scattering

e(K) + p(P ) → e′(K ′) +X (4.39)

the radiative contributions to the observed cross section are shown in Figure 4-39. The

Figure 4-39: Feynman diagrams contributing to the observed cross section in inelastic electron-
proton scattering.

observed cross section can be written as [123, 117, 116]

σobs = σnon−rad(E
γ
min) + σin(Eγ

min) + σel (4.40)

where Eγ
min is the minimal detectable photon energy. Here, σin and σel are contributions of

the radiative tails from continuous spectrum and elastic scattering, and σnon−rad contains

the Born process (Figure 4-39(a)), loop corrections (Figure 4-39(d, e)), and soft-photon
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production (Figure 4-39(b, c)) with Eγ < Eγ
min. This can be written more explicitely as

σ = δR(Eγ
min)(1 + δvert + δvac + δsm)σ0 + σadd(Eγ

min) + σel + σin(Eγ
min) (4.41)

where

δR(Eγ
min) = exp

[

−α
π

(

ln
E

Eγ
min

+ ln
E′

Eγ
min

)(

ln
Q2

m2
e

− 1

)]

(4.42)

δvert =
α

π

(

−2 +
3

2
ln
Q2

m2
e

)

(4.43)

δvac =
α

π

(

−20

9
+

2

3
ln
Q2

m2
e

+
3

2
ln
Q2

m2
µ

)

(4.44)

δsm =
α

π

(

−π
2

6
+ Li2

(

cos2 θ

2

)

− 1

2
ln2 (1 − y)

)

(4.45)

δvert is the vertex correction, δvac is the correction due to vacuum polarization by electron

and muon, and δsm is a residuum correction of the cancellation of the infrared divergent

terms independent of Eγ
min; θ is the angle between the real and virtual photon, and

y = ω/E is the Bjorken scaling variable.

For calculations of these radiative effects a modified version of the POLRAD code

[122, 124] has been used [6, 125, 126, 127], based on the above relations. In the POLRAD

code σin corresponds to the deep inelastic scattering (DIS) cross section, while in the

modified version, it corresponds to one of the two MAID channels e p → e′ p π0 or e p →

e′ nπ+. A large (x, y) grid that covers the BLAST acceptance over the inelastic (∆) region

is used as input, i.e. Q2 ∈ [0.0, 0.5] (GeV/c)2 and W ∈ [1.08, 1.4] GeV. These calculations

show that the main contribution arises from elastically scattered electrons, due to the

relatively high elastic electron scattering cross section.
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4.3.4 Generation of Radiative Events

Unpolarized Electron-Proton Scattering

The generation of the radiative events is completely different than calculating them

[128]. If one takes into account the radiative effects, then the strategy for generating one

event is as follows [127, 128, 121]:

• For the fixed initial energy, Ee, and momentum transfer squared, Q2, both the

non-radiative and radiative parts of the observed cross section are calculated.

• The scattering channel is simulated in accordance with the partial contributions of

these two parts into the total cross section.

• The azimuthal angle, φe, is simulated uniformly over the detector acceptance.

• For the radiative event, the kinematic variables t, v, and φK are simulated in accor-

dance with their analytically calculated distributions; first t, then v by taking into

account t, and finally φK according to t and v.

• The four-momenta of all final particles are calculated.

• If Q2 is simulated in accordance with some distribution, i.e. the Born cross section,

then the Born cross section has to be reweighted.

In order to generate unpolarized radiative events the ELRADGEN code [122, 121]

is used, which is incorporated into the BLAST Monte Carlo event generator. The code

needs as input, the observed momentum transfer, Q ≡ Qobs, which is simulated inside

the BLAST Monte Carlo generator, the parameter vmin, and the beam energy, Ee. If a

radiative event is generated, it returns the true momentum transfer, Qtrue, the radiated

photon four-momentum, Kγ , and a weight, σobs/σBorn, which is used to multiply the Born
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cross section in order to get the observed cross section. The electron, virtual photon and

proton final momenta are then calculated from Ee, Qtrue and Kγ .

In Figure 4-40 the simulation results using ELRADGEN (green line) are presented for

the invariant mass, W , averaged over the entire range of transfer momentum squared,

Q2 ∈ [0.08, 0.38]GeV 2.
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Figure 4-40: BLAST invariant mass (red dots), W (GeV ), for left (left) and right (right) sectors
and Monte Carlo simulations of radiative effects (green line) using unpolarized ELRADGEN and
Hoehler form factors model, Q2 ∈ [0.08, 0.38]GeV 2.

Polarized Electron-Proton Scattering

If we take into account the polarization vectors (see Figure 4-41) of the initial electron

and proton, denoted by ξ and η, respectively, than we have

e(K, ξ) + p(P, η) → e′(K ′) + p′(P ′) + γ(Kγ) (4.46)
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Figure 4-41: The polarization vectors for initial electron (ξ) and proton (η) in the laboratory frame.

At BLAST, the electrons are longitudinally polarized, ξ||z. Therefore the polarized vector

has the form (using the notation from Figure 4-4)

ξ =
Pb√
λs

(

S

me
K − 2meP

)

(4.47)

where S = 2KP , λs = S2 − 4m2
eM

2
p , K2 = K ′2 = m2

e, P
2 = P ′2 = M2

p , Pb is the degree

of the beam polarization (%). In the BLAST laboratory frame, the target polarization

vector can be decomposed into longitudinal

ηL =
1√
λs

(

2MpK − S

Mp
P

)

(4.48)
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and transverse components

ηT = cos(φ− φη)η
L
T + sin(φ− φη)η

T
T (4.49)

where

ηL
T =

1√
λλs

[

(4m2
eM

2
p + 2Q2M2

p − 2SX)K + λsK
′ − (SQ2 + 2m2

eSx)P
]

(4.50)

ηT
T =

(

0,
k′ × k

|k||k′| sin θ

)

(4.51)

and θ = θe, is the electron in-plane scattering angle, φ = φe is the electron azimuthal

angle; X = 2PK ′, Sx = S − X, λ = SXQ2 −M2
pQ

4 − m2
e(Sx + 4Q2M2

p ). The target

polarization vector can be written now as

η = Pt(ηL cos θη + ηT sin θη) (4.52)

where Pt is the degree of target polarization (%).

At BLAST:

Pb ≈ 65%, Pt ≈ 80%, φη ≈ 0◦, θη ≈ 48.84◦ (4.53)

The code ELRADGEN has been generalized to include these polarization contributions

from the initial electron and proton, by A. Ilyichev [127].

4.4 Monte Carlo Simulations

The BLAST Monte Carlo event generator is divided into two parts: event genera-

tion and particle propagation. The event generation component is a C++ object oriented

library, developed specifically for the BLAST experiment. It allows for different theo-
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retical models to be implemented (added) separately, and it handles both hydrogen and

deuterium targets. For a given reaction channel and target, it generates initial event kine-

matics for all the particles in the reaction either according to the cross section or to a flat,

”white” distribution. The elastic channel uses Hőhler form factors [103, 106], which are

computed on a two-dimensional grid, (φe, θe). In the case of radiative effects simulations,

the ELRADGEN code is added to the elastic model at the event kinematics reconstruc-

tion level, that is, for each φe, θe generated event, the observed momentum transfer is

reconstructed as follows

q2obs = −Q2
obs = −4EeEe′ sin

2 θe

2

S = 2EeMp

vmax = S −Q2
obs −

M2
pQ

2
obs

S

Q
(1)
obs = −

√

Q2
obsvmax

S
cosφe (4.54)

Q
(2)
obs = −

√

Q2
obsvmax

S
sinφe

Q
(3)
obs = Q2

obs

2M2
p + S

2MpS

Q
(4)
obs =

Q2
obs

2Mp

The values of Qobs, Ee, vmin are then fed to ELRADGEN, which returns Qtrue,Kγ and a

weight with which the Born cross section is multiplied in order to get the observed cross

section. ELRADGEN is initialized at the initialization stage, that is, at the begining of

event generation. Note that

Q2
obs = Q

(1)2

obs +Q
(2)2

obs +Q
(3)2

obs −Q
(4)2

obs (4.55)

=
(

Q
(1)
true +K(1)

γ

)2
+
(

Q
(2)
true +K(2)

γ

)2
+
(

Q
(3)
true +K(3)

γ

)2
−
(

Q
(4)
true +K(4)

γ

)2
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but, for radiative events

Q
(i)
obs 6= Q

(i)
true +K(i)

γ , i = 1, 4 (4.56)

The MAID 2003 and SL models use a five-dimensional grid (θe, φe, θ
cm
π , φcm

π ,W ) to

calculate the differential cross section for each individual ∆+,∆0 channel.

Because of its object oriented design, individual channels can be added together in

the BLAST Monte Carlo generator. In the case of the inclusive scattering of polarized

electrons from polarized protons, the elastic channel, ~p(~e, e′p), and both MAID pion pro-

duction channels from the proton, ~p(~e, e′)pπ0, ~p(~e, e′)nπ+, are added together, and each

channel is generated according to its cross section. Note that for the two MAID channels

mention above, some of the generated events do make it into the detector acceptance, i.e.

~p(~e, e′p)π0, ~p(~e, e′n)π+, etc..

The second component of the BLAST Monte Carlo generator, the particle propagation,

is handled by a GEANT Monte Carlo code which simulates the beam, target, and detector

hardware, as well as physics processes occuring during propagation (i.e. energy loss,

hadronic interactions, multiple scattering, etc.). The detectors are positioned within a

master coordinate system, namely, the BLAST laboratory system, which is described in

Appendix B. The output of the reconstruction allows direct comparison of the kinematics

of the generated events to the data.
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CHAPTER 5

Results and Discussion

5.1 Asymmetry Extraction

The measured spin-dependent rates are corrected for background and radiative con-

tributions and are given by

R+ =
N++

Q++
+
N−−

Q−− −
N++

empty

Q++
empty

−
N−−

empty

Q−−
empty

− N++
rad

Q++
rad

− N−−
rad

Q−−
rad

R− =
N+−

Q+− +
N−+

Q−+
−
N+−

empty

Q+−
empty

−
N−+

empty

Q−+
empty

− N+−
rad

Q+−
rad

− N−+
rad

Q−+
rad

(5.1)

where the radiative yields, N++
rad /Q

++
rad, N

−−
rad /Q

−−
rad, N

+−
rad /Q

+−
rad , and N−+

rad /Q
−+
rad are deter-

mined by normalizing the Monte Carlo simulations with radiative effects using polarized

ELRADGEN [127] (see also subsection 4.3.4) to the data elastic peak (see Figure 5-1).

The spin-dependent radiative corrections demonstrate a helicity behavior, the +− and −+

spin states have more radiative contributions than the ++ and −− states (see Figure 5-2).

For the correspondingQ2 values (see Table 5.1) these radiative contributions are shown

in Figures 5-3, 5-4, 5-5, 5-6. N±± represents the number of events, and Q±± is the charge

for each spin-state combination for the ABS hydrogen data, the first ± sign represents the

orientation of the electron helicity (spin projection parallel (+) or anti-parallel (−) to its

momentum), and the second ± sign represents the spin orientation of the target nucleon,

i.e. proton (parallel (+) or anti-parallel (−) to the magnetic holding field); N±±
empty and

Q±±
empty denote the same quantities, but for the empty target data (section 4.2).
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Figure 5-1: Normalized yields as a function of the invariant mass, W (GeV ) over 0.08 < Q2 <
0.38GeV 2. The dots show the BLAST ABS hydrogen data corrected for the background contri-
butions, and the solid line represents the Monte Carlo simulations with radiative effects (polarized
ELRADGEN). Left sector is on the left, right sector on the right.
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Figure 5-2: Normalized yields as a function of the invariant mass, W (GeV ) over 0.08 < Q2 <
0.38GeV 2, for the radiative simulations obtained with the polarized ELRADGEN code, for all the
electron-target spin states. Left sector is on the left, right sector on the right.
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Figure 5-3: Normalized yields as a function of the invariant mass, W , for Q2 = 0.123GeV 2. The
dots show the BLAST ABS hydrogen data corrected for the background contributions, and the
solid line represents the Monte Carlo simulations with radiative effects (polarized ELRADGEN).
Left sector is on the left, right sector on the right.
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Figure 5-4: Normalized yields as a function of the invariant mass, W , for Q2 = 0.175GeV 2. The
dots show the BLAST ABS hydrogen data corrected for the background contributions, and the
solid line represents the Monte Carlo simulations with radiative effects (polarized ELRADGEN).
Left sector is on the left, right sector on the right.
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Figure 5-5: Normalized yields as a function of the invariant mass, W , for Q2 = 0.24GeV 2. The
dots show the BLAST ABS hydrogen data corrected for the background contributions, and the
solid line represents the Monte Carlo simulations with radiative effects (polarized ELRADGEN).
Left sector is on the left, right sector on the right.
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Figure 5-6: Normalized yields as a function of the invariant mass, W for Q2 = 0.312GeV 2. The
dots show the BLAST ABS hydrogen data corrected for the background contributions, and the
solid line represents the Monte Carlo simulations with radiative effects (polarized ELRADGEN).
Left sector is on the left, right sector on the right.
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Using these measured rates (5.1), the measured asymmetry is given by:

Ameas =
R+ −R−

R+ +R− (5.2)

The extracted asymmetry, A, is related to the measured asymmetry by

A =
Ameas

PbPt
(5.3)

where PbPt is the beam-target polarization product, and for BLAST polarized hydrogen

is PbPt = 0.537 [106, 103, 129]. The radiative effects to the extracted asymmetry are

presented in Figure 5-7, where the asymmetries for both left and right sectors are shown

with and without radiative corrections (for 0.08 < Q2 < 0.38GeV 2). The extracted

asymmetry, A, for both left and right sectors is shown in Figures 5-8, 5-9, 5-10, 5-11, for

different Q2 values, using the standard cuts discussed in subsection 4.1.2.

We divided the momentum transfer squared interval in 4 bins, for the asymmetries

and spin-correlation parameters as a function of the invariant mass, W . These bins are

given in Table 5.1.

Q2 bin Q2 range [(GeV/c)2] < Q2 > [(GeV/c)2]

1 0.08 - 0.15 0.123

2 0.15 - 0.22 0.175

3 0.22 - 0.29 0.240

4 0.29 - 0.38 0.312

Table 5.1: The four Q2 bins used in this analysis as a function of W .
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Figure 5-7: The effect of the radiative contributions to the asymmetry. The left (left) and right
(right) asymmetries are shown with (red dots) and without (black squares) radiative corrections
(RC), 0.08 < Q2 < 0.38GeV 2.
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Figure 5-8: Extracted asymmetry, A, for left (left) and right (right) sectors as a function of
invariant mass, W , and for Q2 = 0.123GeV 2.
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Figure 5-9: Extracted asymmetry, A, for left (left) and right (right) sectors as a function of
invariant mass, W , and for Q2 = 0.175GeV 2.
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Figure 5-10: Extracted asymmetry, A, for left (left) and right (right) sectors as a function of
invariant mass, W , and for Q2 = 0.24GeV 2.
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Figure 5-11: Extracted asymmetry, A, for left (left) and right (right) sectors as a function of
invariant mass, W , and for Q2 = 0.312GeV 2.

5.2 Spin Correlation Parameters

The spin-correlation parameters, ATT ′ , ATL′ , are related to the extracted asymmetry,

A by:

A =
σP=+1 − σP=−1

σP=+1 + σP=−1
=

= ATT ′ cos θ∗ +ATL′ sin θ∗ cosφ∗ (5.4)

where σP=±1 is given in (2.35), and θ∗, φ∗ are the target spin angle relative to q (see

Appendix B).

For each left and right sector we get:











AL = ATT ′ cos θ∗L +ATL′ sin θ∗L cosφ∗L = ATT ′ z∗L +ATL′ x∗L

AR = ATT ′ cos θ∗R +ATL′ sin θ∗R cosφ∗R = ATT ′ z∗R +ATL′ x∗R

(5.5)
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where z∗L,R = cos θ∗L,R and x∗L,R = sin θ∗L,R cosφ∗L,R are the target spin angle projections

in the q− system (axes ux and uz in Figure 2-2). From the left and right asymmetries we

extract the spin-correlation parameters:

ATT ′ =
ALx

∗
R −ARx

∗
L

x∗Rz
∗
L − x∗Lz

∗
R

(5.6)

ATL′ =
ARz

∗
L −ALz

∗
R

x∗Rz
∗
L − x∗Lz

∗
R

(5.7)

The spin correlation parameters, ATT ′ , ATL′ are shown in Figures 5-12, 5-13, 5-14,

5-15, using the standard cuts (subsection 4.1.2). For each bin in AL,R, using the standard

cuts (Table 4.2), we histogram each of x∗L,R, z∗L,R, and ǫL,R and then get their mean

values (given in Appendices D, E). These values are used in the extraction of the spin-

correlation parameters (x∗L,R, z∗L,R) and the partial cross-sections (ǫL,R), together with

the left and right asymmetries (AL, AR). Using the relation between the correlation

parameters, ATT ′ , ATL′ , and the partial cross sections, σTT ′ , σTL′ given in (2.36) we get

the ratios σTT ′/σ0, σTL′/σ0, where σ0 = σT + ǫσL, is the total unpolarized cross-section

(spin-independent). These ratios are given in Figures 5-16, 5-17, 5-18, 5-19.

5.3 Electric and Coulomb Quadrupole Strength Extraction

The spin-correlation parameters, ATT ′ and ATL′ are used to extract the electric and

coulomb quadrupole strengths, E2 and C2 respectively, in the γN∆ transition, by opti-

mizing the agreement between the data and the model predictions for different quadrupole

strengths using the least square method [95, 130]. We used the MAID model [1, 21] for

this extraction. In this model the standard values are given by E2/M1std. = −2.2% and

C2/M1std. = −6.5%. In the first step we vary E2 from E2 = 1% to E2 = 6%, and we

keep M1 and C2 to their standard values. The second step, we vary C2 from C2 = 1%

to C2 = 6%, and we keep M1 and E2 fixed to their standard values.
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Figure 5-12: Spin correlation parameters, ATT ′ , ATL′ , as a function of invariant mass, W , and for
Q2 = 0.123GeV 2.
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Figure 5-13: Spin correlation parameters, ATT ′ , ATL′ , as a function of invariant mass, W , and for
Q2 = 0.175GeV 2.
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Figure 5-14: Spin correlation parameters, ATT ′ , ATL′ , as a function of invariant mass, W , and for
Q2 = 0.24GeV 2.
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Figure 5-15: Spin correlation parameters, ATT ′ , ATL′ , as a function of invariant mass, W , and for
Q2 = 0.312GeV 2.
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Figure 5-16: The ratios σTT ′/σ0, σTL′/σ0, as a function of invariant mass, W , and for Q2 =
0.123GeV 2.
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Figure 5-17: The ratios σTT ′/σ0, σTL′/σ0, as a function of invariant mass, W , and for Q2 =
0.175GeV 2.
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Figure 5-18: The ratios σTT ′/σ0, σTL′/σ0, as a function of invariant mass, W , and for Q2 =
0.24GeV 2.
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Figure 5-19: The ratios σTT ′/σ0, σTL′/σ0, as a function of invariant mass, W , and for Q2 =
0.312GeV 2.
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For this extraction, we used the three bins around the delta peak, W = 1.184, 1.22,

1.258GeV , where the maximum predicted values have been obtained for ATL′ and ATT ′ .

A χ2 is calculated as follows:

χ2 =
1

3

3
∑

k=1

(fDATA
k − fMAID

k )2

σ2
k

(5.8)

where the summation over k runs over the three points mentioned above, fDATA
k =

ATT ′ , ATL′ are the BLAST results, σk represents the statistical and systematic errors

of the data points. The spin-correlation parameters results, using the MAID model, are

given in Figures 5-20, 5-21, 5-22, 5-23, 5-24, 5-25, 5-26, 5-27, for the four Q2 bins (Ta-

ble 5.1).

The results for the minimization procedure are given in Table 5.2 and shown in Fig-

ures 5-28 and 5-29, as a function of Q2 [(GeV/c)2], relative to their standard values in the

MAID model.

Q2 [GeV 2] E2/M1 [%] C2/M1 [%]

0.123 -2.10 ± 0.018 (stat.) ± 0.246 (syst.) -5.89 ± 0.015 (stat.) ± 0.994 (syst.)

0.175 -2.09 ± 0.017 (stat.) ± 0.291 (syst.) -6.45 ± 0.017 (stat.) ± 0.761 (syst.)

0.240 -2.05 ± 0.034 (stat.) ± 0.253 (syst.) -6.49 ± 0.031 (stat.) ± 0.838 (syst.)

0.312 -2.03 ± 0.057 (stat.) ± 0.178 (syst.) -5.83 ± 0.048 (stat.) ± 0.747 (syst.)

Table 5.2: Extracted E2/M1, C2/M1 [%] using the MAID model, for each Q2 bin (Table 5.1).

This analysis shows that the electric, E2, and coulomb, C2, quadrupole strengths of

the γN∆ transition can be extracted in an elegant way in the case of inclusive scattering

of polarized electrons from polarized protons. In the exclusive scattering, besides E1+ and

S1+, other multipoles interfere with M1+, whereas, in the inclusive scattering, only the

E1+ and S1+ multipoles interfere with the dominating M1+ multipole.
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Figure 5-20: Dependence of the spin-correlation parameters, ATL′ and ATT ′ , on the E2 quadrupole
strength for Q2 = 0.123GeV 2, in the MAID model.
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Figure 5-21: Dependence of the spin-correlation parameters, ATL′ and ATT ′ , on the E2 quadrupole
strength for Q2 = 0.175GeV 2, in the MAID model.
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Figure 5-22: Dependence of the spin-correlation parameters, ATL′ and ATT ′ , on the E2 quadrupole
strength for Q2 = 0.24GeV 2, in the MAID model.
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Figure 5-23: Dependence of the spin-correlation parameters, ATL′ and ATT ′ , on the E2 quadrupole
strength for Q2 = 0.312GeV 2, in the MAID model.
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Figure 5-24: Dependence of the spin-correlation parameters, ATL′ and ATT ′ , on the C2 quadrupole
strength for Q2 = 0.123GeV 2, in the MAID model.
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Figure 5-25: Dependence of the spin-correlation parameters, ATL′ and ATT ′ , on the C2 quadrupole
strength for Q2 = 0.175GeV 2, in the MAID model.
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Figure 5-26: Dependence of the spin-correlation parameters, ATL′ and ATT ′ , on the C2 quadrupole
strength for Q2 = 0.24GeV 2, in the MAID model.
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Figure 5-27: Dependence of the spin-correlation parameters, ATL′ and ATT ′ , on the C2 quadrupole
strength for Q2 = 0.312GeV 2, in the MAID model.
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Figure 5-28: Extracted E2 quadrupole strength as a function of Q2 [(GeV/c)2], using the MAID
model.
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Figure 5-29: Extracted C2 quadrupole strength as a function of Q2 [(GeV/c)2], using the MAID
model.
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5.4 Spin Structure Functions

The partial cross sections, σTT ′ and σTL′ are related to the spin structure functions,

g1 and g2, depending on x = Q2/2Mpω and Q2, and these relations are given by [21]

σTL′ = − 4π2α

MpK
γ(g1 + g2) (5.9)

σTL′ = − 4π2α

MpK
(g1 − γ2g2) (5.10)

where γ = Q/ω, ω = Ee−Ee′ , andK is the ”equivalent photon energy”, i.e. the laboratory

energy required by a real photon to excite the π − p system to an invariant mass. The

conventional choice for K is known as Hand’s convention [26] and is given by

K = KH =
W 2 −M2

2M
= ω(1 − x) (5.11)

where M is the nucleon mass, in this case proton, Mp. Solving (5.9) for g1,2 we get the

spin structure functions

g1(Q
2, x) = −MK

4π2α

γσTL′ + σTT ′

1 + γ2
(5.12)

g2(Q
2, x) = −MK

4π2α

1
γσTL′ − σTT ′

1 + γ2
(5.13)

The spin-structure functions, g1 and g2, depend on both x and Q2. Hence the asymme-

tries are extracted as a function of these quantities, then the spin-correlation parameters,

the partial cross sections and finally the spin-structure functions, by using the mean value

of the histograms for K and γ for each (Q2,W ) bin. The radiative contributions are

shown in Figures 5-30, 5-31, 5-32, 5-33, and 5-34. The extracted asymmetries are given

in Figures 5-35, 5-36, 5-37, 5-38, and 5-39. The extracted spin structure functions are

presented in Figures 5-40, 5-41, 5-42, 5-43, and 5-44, as a function of Q2 and x.
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Figure 5-30: Normalized yields as a function of the momentum transfer squared Q2 in the ∆ region
(1.1 < W < 1.36GeV ), and for x ∈ [0.08, 0.48]. The dots show the BLAST ABS hydrogen data
corrected for the background contributions, and the line shows the Monte Carlo radiative effects.
Left sector is on the left, right sector on the right.
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Figure 5-31: Normalized yields as a function of the momentum transfer squared Q2 in the ∆ region
(1.1 < W < 1.36GeV ), and for x ∈ [0.08, 0.28]. The dots show the BLAST ABS hydrogen data
corrected for the background contributions, and the line shows the Monte Carlo radiative effects.
Left sector is on the left, right sector on the right.
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Figure 5-32: Normalized yields as a function of the momentum transfer squared Q2 in the ∆ region
(1.1 < W < 1.36GeV ), and for x ∈ [0.28, 0.48]. The dots show the BLAST ABS hydrogen data
corrected for the background contributions, and the line shows the Monte Carlo radiative effects.
Left sector is on the left, right sector on the right.
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Figure 5-33: Normalized yields as a function of the Bjorken scaling variable x in the ∆ region
(1.1 < W < 1.36GeV ), and for Q2 ∈ [0.08, 0.18]GeV 2. The dots show the BLAST ABS hydrogen
data corrected for the background contributions, and the line shows the Monte Carlo radiative
effects. Left sector is on the left, right sector on the right.
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Figure 5-34: Normalized yields as a function of the Bjorken scaling variable x in the ∆ region
(1.1 < W < 1.36GeV ), and for Q2 ∈ [0.18, 0.38]GeV 2. The dots show the BLAST ABS hydrogen
data corrected for the background contributions, and the line shows the Monte Carlo radiative
effects. Left sector is on the left, right sector on the right.

)2 (GeV2Q
0.1 0.15 0.2 0.25 0.3 0.35

L
A

-0.04

-0.02

0

0.02

0.04

0.06

0.08

 BLAST

 MAID2003

 Sato & Lee

)2 (GeV2Q
0.1 0.15 0.2 0.25 0.3 0.35

R
A

0.1

0.15

0.2

0.25

0.3

 BLAST

 MAID2003

 Sato & Lee

Figure 5-35: Extracted asymmetry, A, for left (left) and right (right) sectors as a function of
Q2 [GeV 2] in the ∆ region (1.1 < W < 1.36GeV ) and for x ∈ [0.08, 0.48].

134



)2 (GeV2Q
0.1 0.15 0.2 0.25 0.3

L
A

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

 BLAST

 MAID2003

 Sato & Lee

)2 (GeV2Q
0.1 0.15 0.2 0.25 0.3

R
A

0.16

0.18

0.2

0.22

0.24

0.26

0.28

 BLAST

 MAID2003

 Sato & Lee

Figure 5-36: Extracted asymmetry, A, for left (left) and right (right) sectors as a function of
Q2 [GeV 2] in the ∆ region (1.1 < W < 1.36GeV ) and for x ∈ [0.08, 0.28].
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Figure 5-37: Extracted asymmetry, A, for left (left) and right (right) sectors as a function of
Q2 [GeV 2] in the ∆ region (1.1 < W < 1.36GeV ) and for x ∈ [0.28, 0.48].
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Figure 5-38: Extracted asymmetry, A, for left (left) and right (right) sectors as a function of x, in
the ∆ region (1.1 < W < 1.36GeV ), and for Q2 ∈ [0.08, 0.18]GeV 2.
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Figure 5-39: Extracted asymmetry, A, for left (left) and right (right) sectors as a function of x, in
the ∆ region (1.1 < W < 1.36GeV ), and for Q2 ∈ [0.18, 0.38]GeV 2.
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Figure 5-40: The spin-structure functions, g1/σ0 and g2/σ0 as a function of Q2[GeV 2] in the ∆
region (1.1 < W < 1.36GeV ), and for x ∈ [0.08, 0.48], 〈x〉 = 0.21, using Hand’s convention.
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Figure 5-41: The spin-structure functions, g1/σ0 and g2/σ0 as a function of Q2[GeV 2] in the ∆
region (1.1 < W < 1.36GeV ), and for x ∈ [0.08, 0.28], 〈x〉 = 0.185, using Hand’s convention.
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Figure 5-42: The spin-structure functions, g1/σ0 and g2/σ0 as a function of Q2[GeV 2] in the ∆
region (1.1 < W < 1.36GeV ), and for x ∈ [0.28, 0.48], 〈x〉 = 0.32, using Hand’s convention.
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Figure 5-43: The spin-structure functions, g1/σ0 and g2/σ0 as a function of x in the ∆ region
(1.1 < W < 1.36GeV ), and for 0.08 < Q2 < 0.18GeV 2, 〈Q2〉 = 0.129 [GeV 2], using Hand’s
convention.
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Figure 5-44: The spin-structure functions, g1/σ0 and g2/σ0 as a function of x in the ∆ region
(1.1 < W < 1.4GeV ), and for 0.18 < Q2 < 0.38GeV 2, 〈Q2〉 = 0.225 [GeV 2], using Hand’s
convention.

5.5 Systematic Uncertainties

5.5.1 Reconstruction Uncertainty

The internal geometry of the wire chambers was corrected but there are still discrepan-

cies between the measured angles and momenta of scattered electrons and recoil protons

from the well known benchmark in elastic kinematics [113]. The first order contributions

to the kinematic constraints are the momentum (after accounting for proton’s energy loss)

and polar angle defined within the BLAST frame. The azimuthal angle shows a system-

atic deviation of 0.3◦ from the constraint of coplanarity and can thus be neglected since

this deviation is less than the resolution in φe for BLAST, and is only a second order

contribution to the elastic constraints on Q2. A χ2 minimization over Q2 was attempted

over all four first order variables, Ee′ , Pp, θe, and θp. The resolution of the wire chambers
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proves much better in θ, e.g. θe − θe(θp) gives a σ < 0.5◦, whereas Ee′ − Ee′(Pp) gives a

σ of roughly 14% of the value of Ee′ and a systematic deviation from zero that is greater

than 14% of Ee′ . The χ2 minimization effectively determines the systematic deviations

in θe and θp with very little influence from the values of Ee′ and Pp. Hence, the first

step was to use the measured values of θe and θp event by event, along with the well

known beam energy, and determine the first corrections to Ee′ and Pp via the relations

Ee′ = Ee′ − Ee′(θe) and Pp = Pp − Pp(θp).

Figure 5-45: Best θe
◦ versus θp

◦ for the left (left) and right (right) sectors for the elastic electron-
proton scattering.

These corrections were input and then the χ2 minimization in Q2 was taken over the

new values of Ee′ , Pp, and the old values of θe and θp in order to determine the best values

of θe and θp (Figure 5-45) from the best value of Q2 as determined from the measured

values of θe and θp and the corrected values of Ee′ and Pp

χ2(Ee′ , Pp, θe, θp) =
(Q2 −Q2(Ee′))

2

δE2
e′

+
(Q2 −Q2(Pp))

2

δP 2
p

+
(Q2 −Q2(θe))

2

δθ2
e

+
(Q2 −Q2(θp))

2

δθ2
p
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The values of Ee′ and Pp were corrected to prevent the large systematic discrepancies

from influencing the χ2 minimization. After the best Q2 was found, we convert backwards

and bin the data to find the sector dependent corrections to θe and θp, i.e. correction to

θe = θe − θe(Q
2
best), etc.

These corrections were found to be less than 0.3◦ nearly everywhere, and when plotting

the corrected distribution of θe−θe(θp) and θp−θp(θe) the mean was found to be centered

on zero where it was originally off by 0.3◦. The corrections to the momentum were then

determined by using the functional dependence of Ee′(θe) and Pp(θp) since the corrected

values of θe and θp were found to be well within the resolution and the constraints from

elastic kinematics.

Figure 5-46: Beam Energy corrections using Ee′ and θe (left), and Pp and θp (right) as a function
of the polar angle(◦).

When convoluting these first order contributions and reconstructing the beam energy

from final corrected values, we see a correlation with the expected beam energy and

deviations that are at least a factor of 2 less than the resolution of the momentum of both
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the proton and electron. The reconstructed beam energy is shown in Figure 5-46.

Since these corrections have been done over the elastic region and the momentum of the

electron was corrected, it is reasonable to consider half of this deviation over the inelastic

region. The systematic errors due to electron momentum and polar angle are presented in

Appendices D, C together with the measured values of the physical quantities discussed

in section 5.2.

5.5.2 Target Spin Angle Uncertainty

In this analysis the target spin angle is used in the extraction of the spin correlation

parameters, ATL′ , ATT ′ , and enters in the determination of the target spin projections

onto the ux and uz axes, namely x∗ and z∗. Although the asymmetries measurements

depend on the orientation of the target spin, we extract them without any knowledge of

it.

A new method used at Jefferson Laboratory was implemented in order to redo the

target holding field mapping. This method is based on a compass principle, where the

field angle is measured directly. The compass device is a magnetic probe which sits on an

air pillow and can be sled along the BLAST z axis. A mirror is attached to the probe and

the angle of the probe orientation is measured by the direction of the reflected light from

a laser placed on the axis. With this method, the uncertainty of the target spin angle was

found to be 0.45◦.

Throughout this analysis, the spin angle map from [131] was used. Figure 5-47 shows

the target spin angle profile as a function of the target cell length, ztarget.

5.5.3 False Asymmetries

The beam only and target only asymmetries discussed in (4.2.2) are independent

measurements of the false asymmetries.
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Figure 5-47: Target spin angle map as a function of the target cell length.

The beam and target asymmetries are shown in Figures 5-48, 5-49, 5-50, 5-51, 5-52,

5-53, 5-54, 5-55, 5-56, 5-57, 5-58, 5-59, 5-60, 5-61, for all the cases discussed in section 5.1.

5.5.4 Beam and Target Polarization Uncertainty

The beam-target polarization product is used in the extraction of the correlation

parameter, A, from the measured asymmetries for both left and right sectors. The average

beam and target polarizations for the hydrogen production run period from October to

December of 2004 were Pb = 0.6558 ± 0.0007stat ± 0.04sys, and Pt = 0.80 ± 0.0007stat ±

0.04sys.

The raw experimental asymmetries for the elastic electron-proton scattering are fit to

a parametrization using the Hőhler form factors [106] in order to extract the product of

beam and target polarization, P = Pb · Pt. The result is shown in Figure 5-62.

The systematic error contributions due to the polarization product, P , are given in

Appendix C together with the measured values for the correlation parameter, A, for

both left and right sectors.
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Figure 5-48: Beam only asymmetry for left (left) and right (right) sectors as a function of invariant
mass, W , at Q2 = 0.123GeV 2.
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Figure 5-49: Target only asymmetry for left (left) and right (right) sectors as a function of invariant
mass, W , at Q2 = 0.123GeV 2.
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Figure 5-50: Beam only asymmetry for left (left) and right (right) sectors as a function of invariant
mass, W , at Q2 = 0.175GeV 2.
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Figure 5-51: Target only asymmetry for left (left) and right (right) sectors as a function of invariant
mass, W , at Q2 = 0.175GeV 2.
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Figure 5-52: Beam only asymmetry for left (left) and right (right) sectors as a function of invariant
mass, W , at Q2 = 0.24GeV 2.
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Figure 5-53: Target only asymmetry for left (left) and right (right) sectors as a function of invariant
mass, W , at Q2 = 0.24GeV 2.
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Figure 5-54: Beam only asymmetry for left (left) and right (right) sectors as a function of invariant
mass, W , at Q2 = 0.312GeV 2.
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Figure 5-55: Target only asymmetry for left (left) and right (right) sectors as a function of invariant
mass, W , at Q2 = 0.312GeV 2.
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Figure 5-56: Beam only asymmetry for left (left) and right (right) sectors as a function of Q2, over
the ∆ region (1.1 < W < 1.4GeV ).

2 (GeV/c)2Q
0.1 0.15 0.2 0.25 0.3 0.35

-0.02

-0.01

0

0.005

0.01

0.015

0.02 L
target

A

2 (GeV/c)2Q
0.1 0.15 0.2 0.25 0.3 0.35

-0.02

-0.01

0

0.005

0.01

0.015

0.02 R
target

A

Figure 5-57: Target only asymmetry for left (left) and right (right) sectors as a function of Q2,
over the ∆ region (1.1 < W < 1.4GeV ).
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Figure 5-58: Beam only asymmetry for left (left) and right (right) sectors as a function of x, over
the ∆ region (1.1 < W < 1.4GeV ), and for 0.08 < Q2 < 0.18GeV 2.
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Figure 5-59: Target only asymmetry for left (left) and right (right) sectors as a function of x, over
the ∆ region (1.1 < W < 1.4GeV ), and for 0.08 < Q2 < 0.18GeV 2.
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Figure 5-60: Beam only asymmetry for left (left) and right (right) sectors as a function of x, over
the ∆ region (1.1 < W < 1.4GeV ), and for 0.18 < Q2 < 0.38GeV 2.
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Figure 5-61: Target only asymmetry for left (left) and right (right) sectors as a function of x, over
the ∆ region (1.1 < W < 1.4GeV ), and for 0.18 < Q2 < 0.38GeV 2.
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Figure 5-62: The raw experimental asymmetries for the elastic electron-proton scattering for both
left (left) and right (right) sectors. They are fit to the Hőhler form factor parametrization to
extract the beam-target polarization product, P = Pb · Pt.

5.5.5 Background Uncertainty

Background contributions are discussed in section 4.2. The kinematics corrections

(subsection 5.5.1) are applied to the empty target data also. Hence the systematic er-

ror contributions from the background reconstruction uncertainty are added to the total

reconstruction uncertainty and given as a whole in Appendix C.

5.5.6 Normalization and Radiative Corrections Uncertainty

The radiative effects were generated using the ELRADGEN code [122, 121]. This code

only takes into account the radiative contributions coming from the elastic scattering. In

the ∆ region, contributions coming from the inelastic scattering are present as well. In

order to estimate them, calculations using the MASCARAD and POLRAD codes were

performed (see section 4.3). This analysis showed that these effects are small compared

with the radiative tail coming from the elastic electron-proton scattering and they are
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less than the statistical error bars of the asymmetry measurements. Hence they are not

included into the systematic errors.

The Monte Carlo simulations with radiative effects are normalized to the experimental

elastic peak, in order to get the elastic radiative tail over the ∆ excitation region. This

is done using all the data in the elastic scattering region. However, a tighter region was

chosen around the elastic peak, in order to calculate the uncertainties of this normalization

technique. The differences were found to be less than 5%, with the exception when it was

normalized to the maximum peak only, where the difference was less than 20%. When

normalized to the whole experimental elastic peak, the difference in the radiative and the

experimental yields in the vicinity of the pion-production threshold (W = 1.07 GeV), was

also fount to be less than 10%. Hence this percentage was added to the amount of radiative

yields, and then the asymmetries were taken and compared with the extracted ones, in

order to estimate the uncertainties caused by the normalization and radiative effects to

the asymmetry, and they were added to the total systematic errors in Appendix C.

5.6 Results Discussion

In this section we discuss the results presented in sections 5.1 and 5.2.

The extracted asymmetry is affected by the background and radiative contributions. A

large amount of data have been collected with BLAST, which makes the statistical error

bars relatively small, for both the data taken and empty target runs. The asymmetry

systematic errors are caused by the statistical and systematic uncertainties of the beam-

target polarization product, P = Pb ·Pt; the false asymmetries; statistical uncertainties of

the empty-target runs; the radiative corrections and normalization uncertainties.

The overall structure predicted by the theoretical models is observed in the extracted

spin correlation parameters almost over the entire ∆ region. At lower Q2 ranges, the

extracted asymmetry seems to be in much better agreement with the predicted values,
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while at higher Q2 values, it seems that it “shifts” away, although the overall structure is

preserved.

The background and radiative contributions over the ∆ excitation region are summa-

rized in Tables 5.3, 5.5, 5.4, 5.6, for each bin in the invariant mass, W , and for each Q2

average value used. The overall contributions to the data over the ∆ excitation region are

given in Tables 5.7, 5.8.

Q2 W = 1.09 1.13 1.18 1.22 1.25 1.30 1.33

0.123 21.57 % 18.40 % 13.02 % 11.44 % 16.03 % 26.15 % 34.45 %

0.175 25.12 % 19.68 % 14.08 % 13.33 % 18.02 % 26.62 % 35.82 %

0.240 27.77 % 24.18 % 17.77 % 18.87 % 29.12 % 39.50 % 49.69 %

0.312 32.91 % 35.01 % 26.22 % 24.78 % 36.67 % 61.04 % -

Table 5.3: Empty target background as a percentage of the data used in the extraction of the left
asymmetry, AL, as a function of W = [1.1, 1.36]GeV , for each Q2 [GeV 2] bin (Table 5.1).

Q2 W = 1.09 1.13 1.18 1.22 1.25 1.30 1.33

0.123 82.03 % 44.25 % 21.11 % 13.81 % 14.57 % 16.45 % 14.77 %

0.175 63.73 % 32.24 % 14.62 % 9.07 % 8.30 % 8.40 % 7.32 %

0.240 51.39 % 23.58 % 9.17 % 4.66 % 3.91 % 3.40 % 4.35%

0.312 41.54 % 22.57 % 7.75 % 4.13 % 2.87 % 1.25 % -

Table 5.4: Radiative contributions as a percentage of the data used in the extraction of the left
asymmetry, AL, as a function of W = [1.1, 1.36]GeV , for each Q2 [GeV 2] bin (Table 5.1).

The background contributions increase at higher W and Q2, while the radiative con-

tributions decrease. The radiative effects from pion-production processes, although, cause

the radiative tail to decrease very slow at higher W values. These effects were not included

in this analysis. Hence, this might explain the difference between the data and theoretical
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Q2 W = 1.09 1.13 1.18 1.22 1.25 1.30 1.33

0.123 18.74 % 16.48 % 13.44 % 9.99 % 16.21 % 22.51 % 32.96 %

0.175 25.12 % 19.68 % 14.08 % 13.33 % 18.02 % 26.62 % 35.82 %

0.240 26.04 % 26.01 % 19.38 % 20.58 % 29.74 % 37.58 % 39.34 %

0.312 32.36 % 31.84 % 24.15 % 19.79 % 40.06 % 60.43 % -

Table 5.5: Empty target background as a percentage of the data used in the extraction of the right
asymmetry, AR, as a function of W = [1.1, 1.36]GeV , for each Q2 [GeV 2] bin (Table 5.1).

Q2 W = 1.09 1.13 1.18 1.22 1.25 1.30 1.33

0.123 60.62 % 37.90 % 20.98 % 13.09 % 14.87 % 15.93 % 15.49 %

0.175 54.29 % 28.02 % 12.94 % 7.52 % 6.96 % 7.37 % 6.93 %

0.240 42.53 % 22.58 % 10.68 % 6.94 % 5.72 % 4.66 % 4.23 %

0.312 67.24 % 39.56 % 15.31 % 7.31 % 5.75 % 4.50 % -

Table 5.6: Radiative contributions as a percentage of the data used in the extraction of the right
asymmetry, AR, as a function of W = [1.1, 1.36]GeV , for each Q2 [GeV 2] bin (Table 5.1).

Q2 Background Radiative Tail

0.123 19.02 % 23.70 %

0.175 20.20 % 17.24 %

0.240 27.53 % 11.91 %

0.312 30.01 % 10.65 %

Table 5.7: Empty target data and radiative contributions as a percentage of the data used in the
extraction of the left asymmetry, AL, as a function of W = [1.1, 1.36]GeV , for each Q2 [GeV 2] bin
(Table 5.1).

Q2 Background Radiative Tail

0.123 17.61 % 21.76 %

0.175 20.44 % 14.15 %

0.240 27.47 % 13.28 %

0.312 27.85 % 20.24 %

Table 5.8: Empty target data and radiative contributions as a percentage of the data used in the
extraction of the right asymmetry, AR, as a function of W = [1.1, 1.36]GeV , for each Q2 [GeV 2]
bin (Table 5.1).
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models in the last bin of the analysis as a function of the invariant mass, W , and the first

bin of the analysis as a function of the transfer momentum squared, Q2 and the Bjorken

scaling variable, x.

The overall background and radiative tail contributions to the data over the ∆ exci-

tation region for the Q2 and x analysis are summarized in Tables 5.9, 5.10.

Q2 range Background Radiative Tail

0.08 - 0.38 22.09 % 15.66 %

0.08 - 0.18 20.43 % 18.41 %

0.18 - 0.38 25.13 % 11.21 %

Table 5.9: Empty target data and radiative contributions as a percentage of the data used in the
extraction of the left asymmetry, AL as a function of Q2 [GeV 2], over the ∆ region.

Q2 range Background Radiative Tail

0.08 - 0.38 21.09 % 13.70 %

0.08 - 0.18 19.12 % 16.28 %

0.18 - 0.38 24.45 % 11.29 %

Table 5.10: Empty target data and radiative contributions as a percentage of the data used in the
extraction of the right asymmetry, AR as a function of Q2 [GeV 2], over the ∆ region.

5.6.1 Discussion of the Correlation Parameters Results

The correlation parameters, ATT ′ and ATL′ , are extracted using the left and right

asymmetries, AL,R, and the target spin angle x− and z− components onto the ux and

uz axes in the q− frame. These components are obtained by histograming them for each

corresponding data bin, in both the data analysis as well as the Monte Carlo simulations.

For the data analysis, the main errors in the extraction of the spin correlation parameters
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come from the systematic uncertainties in the target spin angle θT and the scattered

electron polar angle, θe, as well as the extracted asymmetries for both left (perpendicular

kinematics, θ∗ ≈ 90◦) and right (parallel kinematics, θ∗ ≈ 0◦) sectors.

The overall structure predicted by the theoretical models is observed in the extracted

spin correlation parameters almost over the entire ∆ region. At lower Q2 ranges, this dif-

ference is quite small, while, with the increase in the transfer momentum squared Q2, this

difference increases also, but, as in the asymmetry case, the overall structure is preserved.

A reduced χ2 is constructed for each theoretical model as follows [95, 99, 109]:

χ2 =
1

n

n
∑

k=1

(fDATA
k − fMODEL

k )2

σ2
k

(5.14)

where n represents the number of bins (degree of freedom), σk are the quadratic sum of

all the uncertainties, statistical and systematic, of the data. The functions fDATA,MODEL
k

represent the data and the theoretical quantities, respectively, namely ATT ′ , ATL′ , g1, g2,

for the kth bin. For the spin-correlation parameters, the χ2 tests are given in Tables 5.11

for each Q2 average value used in this analysis (Figures 5-12, 5-13, 5-14, 5-15).

Q2 [GeV 2] χ2(AMAID
TT ′ ) χ2(ASL

TT ′) χ2(AMAID
TL′ ) χ2(ASL

TL′)

0.123 0.61 3.73 0.13 1.11

0.175 1.02 2.54 0.43 1.66

0.240 1.25 1.75 0.44 1.17

0.312 3.01 3.79 0.92 0.12

Table 5.11: Reduced χ2 values for the correlation parameters ATT ′ and ATL′ as a function of W
for each Q2 average value used in this analysis by comparing BLAST data with MAID and SL
models.

From these tests we see that the MAID model follows closely the BLAST data, than the

Sato & Lee (SL) model, with the exception of the highest momentum transfered squared

value, i.e. for Q2 = 0.312GeV 2.
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5.6.2 Discussion of the Spin-Structure Function Results

The proton spin-structure functions, g1 and g2, are extracted in four steps: first,

the left (perpendicular kinematics, θ∗ ≈ 90◦) and right (parallel kinematics, θ∗ ≈ 0◦)

sectors asymmetries are extracted as a function of Q2 and x; second, using the target

spin angle x− and z− components onto the ux and uz axes in the q− frame (i.e. mean

value of their histogram for each bin), we extract the spin correlation parameters; third, we

extract the partial cross sections, σTT ′/σ0 and σTL′/σ0, using the virtual photon transverse

polarization, ǫ (mean value of its histogram for each bin); and finally, we extract g1 and

g2, using the mean values for ω, x, γ, as discussed in section 5.2.

The overall structure of the data follows the theoretical predictions, with exception at

low x, which means a high W . Note that the high W bins are dominated by high back-

ground contributions. The χ2 tests are given in Tables 5.12 and 5.13 for the results shown

in Figures 5-40, 5-41, 5-42, 5-43 and 5-44. This χ2 tests have been done by neglecting this

first bin for g1, g2 as a function of x (middle raw).

Q2 range [GeV 2] χ2(gMAID
1 ) χ2(gSL

1 ) χ2(gMAID
2 ) χ2(gSL

2 )

0.08 - 0.18 0.10 1.10 0.08 0.12

0.18 - 0.38 0.81 1.94 0.71 0.98

Table 5.12: Reduced χ2 values for the spin-structure functions g1 and g2 as a function of x for the
two Q2 intervals used in this analysis, by comparing BLAST data with MAID and SL models.

5.7 Conclusion

It has been shown that unique studies of the γ∗p→ ∆ transition has been made possible

with BLAST, utilizing the polarized beam and target, along with the BLAST detector. For

the first time, extraction of the spin correlation parameters, ATT ′ , ATL′ , and the proton
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x range χ2(gMAID
1 ) χ2(gSL

1 ) χ2(gMAID
2 ) χ2(gSL

2 )

0.08 - 0.48 1.77 1.27 0.55 0.70

0.08 - 0.28 0.01 1.44 0.03 0.02

0.28 - 0.48 1.92 1.25 0.79 1.03

Table 5.13: Reduced χ2 values for the spin-structure functions g1 and g2 as a function of Q2 for
the three x intervals used in this analysis, by comparing BLAST data with MAID and SL models.

spin-structure functions, g1, g2 have been accomplished (to the extent of knowing the total

unpolarized cross section, σ0 = σT +ǫσL), over a small transfer momentum squared region,

0.08 < Q2 < 0.38GeV 2, all in one experiment. These measurements provide a sensitive

test to the pion-production models, and they show the important role of the pion in the

∆ excitation region.

There is no world data available to compare the spin correlation parameters, ATT ′

and ATL′ extracted with BLAST and given in Figures 5-12, 5-13, 5-14, 5-15. These spin

correlation parameters are sensitive to the electric and coulomb quadrupole strengths, E2

and C2 respectively, and they provide a stringent test to measure these strengths. Note

that we used the standard values for E2 and C2 provided by the two theoretical models

used for comparison in this analysis, namely MAID and SL.

There is one measurement of the transverse spin structure function, g2, performed

at NIKHEF [9, 6], but since we did not measure the total unpolarized cross section,

σ0 = σT + ǫσL, we cannot fully compare these results. However, we can compare the

overall structure and, of big importance, its zero crossing. For the longitudinal spin

structure function, g1, the data are available. The world data results taken from [9, 7, 8]

are shown in Figures 5-65, 5-66, 5-63, and 5-64. Compare to the BLAST data (Figures

5-40, 5-41, 5-42, 5-43 and 5-44), we see a good agreement for g1 and g2 as a function of x

between BLAST results (Figure 5-43) and NIKHEF data (Figures 5-65, 5-66), and a good

agreement for the zero crossing of g1 as a function of Q2 between BLAST points (Figure

158



5-40) and the global results from [8] (Figure 5-64).

Figure 5-63: The spin structure function, g1, obtained from JLab [7] as a function of x, for different
Q2 bins.

The extracted electric and coulomb quadrupole strengths, E2/M1 and C2/M1, to-

gether with the world data at low momentum transfer squared, Q2 [GeV 2], are given in

Figure 5-67. The total errors are given in Table 5.2 and Figures 5-28 and 5-29. From this

figure, we see how BLAST fills in the missing gaps at this Q2 range. The results stand

between the chiral EFT calculations and the phenomenological models (see Figure 5-68

and [10]).

This analysis offers new unique data for the pion-production models.

159



Figure 5-64: World data results for the spin structure function, g1, from [8] as a function of Q2.

Figure 5-65: The spin structure function, g1, obtained from NIKHEF [9] as a function of x, and
for Q2 = [0.09, 0.15]GeV 2.

160



Figure 5-66: The spin structure function, g2, obtained from NIKHEF [9] as a function of x, and
for Q2 = [0.09, 0.15]GeV 2.

Figure 5-67: Extracted E2/M1 and C2/M1 together with the world data as a function of
Q2 [GeV 2]. The blue-dashed curve represents the DMT model [20], and the light-blue small-dashed
curve, the SAID model [10].
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Figure 5-68: Extracted E2/M1 (left) and C2/M1 (right) - red dots, together with the world
data as a function of Q2 [GeV 2]. The data are from MAMI: © [11] ⊕ [12] ⊞ [13] H [14]; Bates:
△ [15], red dots (BLAST); CLAS: � [16]. The lattice QCD calculations with linear pion mass
extrapolations are shown as × [17]. Two chiral EFT calculations are shown: the δ-expansion result
from [10] (red solid curves), and the ǫ-expansion result [18] (black solid curves). The dynamical
model predictions from [19] (green dashed-double-dotted curves) and DMT [20] (blue dashed-
dotted curves) are shown alongside the phenomenological MAID2003 [21] (red dotted curves) and
SAID [22] (black dashed-triple-dotted curves) models. The hypercentral (long dashed curves) [23]
and relativistic (short dashed curves) [3] constituent quark models have been included. Figure
from [10].
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APPENDIX A

Differential Cross Section for Electron Scattering

Recall that
Rfi = χe(K

′;K,S)µνW
µν(q)fi

By contracting the nuclear tensor W µν with the electron tensor χe we get using current
conservation and denoting P = K +K ′ [53]

Rfi = |PµJ
µ(q)fi| + q2J∗

µ(q)fiJ
µ(q)fi − 2hiǫµναβK

αK ′βJµ∗(q)fiJ
ν(q)fi

where

J0(q)fi = ρ(q)fi

is the Fourier transform of the transition charge density, while

J(q)fi =
∑

m=0,±1

J(q;m)fie
∗(q; 1,m)

is the expansion of the Fourier transform of the transition three-curent distribution (con-
vection and magnetization) in terms of the standard unit spherical vectors (see Figure 2-2
for the definition of the u vectors)

e(q; 1, 0) = uz

e(q; 1,±1) = ∓(1/
√

2) (ux ± iuy)

From current conservation

Q0J0(q)fi − q · J(q)fi = ωρ(q)fi − qJ(q; 0)fi = 0

so that J(q; 0)fi = (ω/q)ρ(q)fi, then eliminating J(q; 0)fi from Rfi we get

(Rfi)
unpol = |P 0J0(q)fi − P · J(q)fi|2 + (q2)2(|J0(q)fi|2 − J∗(q)fi · J(q)fi)

(Rfi)
unpol ≡ v0(vLRL

fi + vTRT
fi + vTTRTT

fi + vTLRTL
fi )

and for the polarized part

(Rfi)
pol = −2hiǫµναβK

αK ′βJµ∗(q)fiJ
ν(q)fi

(Rfi)
pol ≡ hv0(vT ′RT ′

fi + vTL′RTL′

fi )
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We can identify now the nuclear response functions, RK
fi as

RL
fi = |ρ(q)fi|2

RT
fi = |J(q; +1)fi|2 + |J(q;−1)fi|2

RTT
fi = 2ℜ{J∗(q; +1)fiJ(q;−1)fi}

RTL
fi = −2ℜ{ρ∗(q)fi(J(q; +1)fi − J(q;−1)fi)}

RT ′

fi = |J(q; +1)fi|2 − |J(q;−1)fi|2

RTL′

fi = −2ℜ{ρ∗(q)fi(J(q; +1)fi + J(q;−1)fi)}

Thus the differential cross section becomes

(

dσ

dΩe

)h

fi

= σMottf
−1
rec

[ (

vLRL
fi + vTRT

fi + vTTRTT
fi + vTLRTL

fi

)

+h
(

vT ′RT ′

fi + vTL′RTL′

fi

) ]

≡ Σfi + h∆fi

Partial cross sections in terms of multipoles

The four partial cross sections, that appear in the inclusive cross section, can be expressed
in terms of the CGLN amplitudes [33] as follows

σT = 4π
|~kπ|
kcm

γ

∑

l

1

2
(l + 1)2

[

(l + 2)
(

|El+|2 + |Ml+1,−|2
)

+ l
(

|Ml+|2 + |El+1,−|2
)]

σL = 4π
|~kπ|
kcm

γ

∑

l

(l + 1)3
[

|Ll+|2 + |Ll+1,−|2
]

σTL′ = 4π
|~kπ|
kcm

γ

∑

l

1

2
(l + 1)2

[

−L∗
l+ ((l + 2)El+ + lMl+) + L∗

l+1,− (lEl+1,− + (l + 2)Ml+1,−)
]

σTT ′ = 4π
|~kπ|
kcm

γ

∑

l

1

2
(l + 1)

[

− (l + 2)
(

|El+|2 + |Ml+1,−|2
)

+ l
(

|Ml+|2 + |El+1,−|2
)

− 2l(l + 2)
(

E∗
l+Ml+ − E∗

l+1,−Ml+1,−
) ]

where

kγ =
M

W
q, W =

√

2Mν +M2 −Q2, ν = Ee − E′
e

and kγ and kπ are the center of mass momenta of the photon and pion, respectively.
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APPENDIX B

BLAST Laboratory Frame

The center of the BLAST system is the center of the target cell (the target cell is a
cylinder whose inside gas cavity is 60cm in length). The BLAST +z-axis is defined to
point in the direction of the electron beam; this direction is also the direction along which
the target cell runs. The BLAST +y-axis points vertically upward (i.e. perpendicular
to and away from the floor of the BLAST setup). The BLAST +x-axis points in the
remaining direction so as to form a right-handed coordinate system with the +yB and the
+zB axes; the +xB axis points to the left sector of the BLAST detector. This is shown
schematically in Figures 5-69 and 3-12.

Figure 5-69: Top view of the BLAST detector (schematic).
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BLAST Target Spin Angle

In order to get the target spin angles in the q-system (defined by ux, uy, and uz as
given in Figure 2-2), we need to perform two rotations as shown in Figure 5-70: one of
angle φe from BLAST laboratory frame to the scattering plane around the zB-axis, and
the other one of angle θq around ySC-axis.

Figure 5-70: The two rotations from BLAST laboratory frame to q-system.

We denote the axes in the BLAST laboratory frame by xB , yB , zB ,in the scattering
frame by xSC , ySC , zSC , and in the q-frame by xq ≡ ux, yq ≡ uy, zq ≡ uz.

The 3 × 3 rotation matrix can be written in the following form:

R̂ =





R11 R12 R13

R21 R22 R23

R31 R32 R33





In the case of the first rotation from the BLAST frame to the scattering frame by the
angle φe around zB , the matrix elements are:

R11 = xSC · xB = cosφe

R12 = xSC · yB = cos
(π

2
− φe

)

= sinφe

R13 = xSC · zB = 0

R21 = ySC · xB = cos
(π

2
+ φe

)

= − sinφe

R22 = ySC · yB = cosφe

R23 = ySC · zB = 0

R31 = zSC · xB = 0

R32 = zSC · yB = 0

R33 = zSC · zB = 1
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Thus the first rotation matrix is:

R̂ZB
(φe) =





cosφe sinφe 0
− sinφe cosφe 0

0 0 1





In the case of the second rotation from the scattering frame to the q-frame by the
angle θq around ySC , the matrix elements are:

R11 = xq · xSC = cos θq

R12 = xq · ySC = 0

R13 = xq · zSC = cos
(π

2
− θq

)

= sin θq

R21 = yq · xSC = 0

R22 = yq · ySC = 1

R23 = yq · zSC = 0

R31 = zq · xSC = cos
(π

2
+ θq

)

= − sin θq

R32 = zq · ySC = 0

R33 = zq · zSC = cos θq

So the second rotation matrix is:

R̂ZB
(θq) =





cos θq 0 sin θq

0 1 0
− sin θq 0 cos θq





Now, the rotation matrix from the BLAST frame to the q-frame can be written

R̂ = R̂ZB
(θq) · R̂ZB

(φe) =





cos θq 0 sin θq

0 1 0
− sin θq 0 cos θq









cosφe sinφe 0
− sinφe cosφe 0

0 0 1





R̂ =





cosφe cos θq sinφe cos θq sin θq

− sinφe cosφe 0
− cosφe sin θq − sinφe sin θq cosθq





If we denote the target spin in the BLAST frame by sB and in the q-frame by sq,
which, in matrix form are defined by

sB =





sin θT

0
cos θT



 , sq =





x∗

y∗

z∗



 =





sin θ∗ cosφ∗

sin θ∗ sinφ∗

cos θ∗





where θT is the target spin angle and lies in the xB − zB plane (the thick green arrow in
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Figure 5-69), and makes an angle of 48◦ relative to the beam line (zB-axis). Then

sq = R̂ · sB

From Figure 2-2 we see that

cos θ∗ =
sq · q
|q| = sqz

Hence

cos θ∗ = − sin θT cosφe sin θq + cos θT cos θq

and

cosφ∗ =
sin θT cosφe cos θq + cos θT sin θq

sin θ∗

At BLAST:

φq = φe + π

φRIGHT
e = 180◦ − φLEFT

e

Summarizing, the BLAST laboratory frame is shown in Figures 5-69 and 3-12, and
has the center in the middle of the target cell; its axes are defined as follows:

z = zB = k, y = yB = upward to the sky, x = xB = yB × zB

The scattering frame is defined by

zSC = zB = k, ySC = k× k′, xSC = ySC × zSC

The q-frame is given by

zq =
q

|q| , yq = ySC = zq × zB , xq = yq × zq

See Figures 2-2, 2-1 and 4-4 for notation.
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APPENDIX C

Asymmetries Values and Errors

In this appendix we present the values and errors for the results given in section 5.1.

Runs type Q++ (C) Q−− (C) Q+− (C) Q−+ (C) QTOTAL (C)

Empty runs 8212.0566 7947.0034 8113.4727 7805.4653 32077.998

Data runs 72184.3359 71615.7344 72057.2578 71922.2578 287779.5859

Table 5.14: Charge information for ~p(~e, e′)p runs.

The following notation is used:

W : average W value
Q2 : average Q2 value
x : average x value

Y ±± = N±±

Q±± : total yields for the data runs

Y ±±
rad =

N±±

rad

Q±±

rad

: normalized radiative tail yields

Y ±±
empty =

N±±

empty

Q±±

empty

: total yields for the empty target data

AL,R : left and right sectors asymmetries
δAstat

L,R : AL,R statistical errors

Abeam
L,R : left and right sectors beam asymmetries

δAbeam
L,R : Abeam

L,R statistical errors

Atarget
L,R : left and right sectors target asymmetries

δAtarget
L,R : Atarget

L,R statistical errors

δP : P = Pb · Pt systematic errors

δAsyst
L,R : AL,R systematical errors
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W [GeV ] 1.096 1.138 1.184 1.22 1.258 1.303 1.33

Y ++ 0.17685 0.25376 0.42690 0.54883 0.43564 0.34852 0.32872

Y −− 0.17715 0.25254 0.42827 0.54969 0.43905 0.33843 0.33103

Y +− 0.19105 0.26998 0.44336 0.53798 0.44117 0.34827 0.35421

Y −+ 0.19480 0.28785 0.43515 0.53285 0.43225 0.35578 0.34268

Y ++
empty 0.04042 0.03860 0.03811 0.04286 0.05467 0.07915 0.08268

Y −−
empty 0.02491 0.04114 0.04441 0.04542 0.05473 0.07122 0.08795

Y +−
empty 0.02428 0.03340 0.04375 0.05657 0.05990 0.08356 0.09367

Y −+
empty 0.03625 0.04048 0.05611 0.04291 0.05303 0.06815 0.10800

Y ++
rad 0.11089 0.08924 0.07095 0.05990 0.04599 0.03514 0.02844

Y −−
rad 0.10859 0.08959 0.07280 0.05992 0.04876 0.03620 0.02772

Y +−
rad 0.13236 0.10685 0.08796 0.07470 0.06028 0.04971 0.03779

Y −+
rad 0.12988 0.10344 0.09008 0.07374 0.06088 0.04919 0.03843

AL -0.11117 -0.09264 0.04282 0.07337 0.04437 0.02391 0.03048

δAstat
L 0.01605 0.01769 0.01040 0.00810 0.01051 0.01578 0.01840

Abeam
L 0.01147 0.04244 -0.01226 -0.00602 -0.01620 0.03307 -0.03002

δAbeam
L 0.00552 0.00442 0.00325 0.00285 0.00335 0.00428 0.00488

Atarget
L -0.01347 -0.03700 0.00876 0.00428 0.00725 0.00485 0.02003

δAtarget
L 0.00552 0.00442 0.00325 0.00285 0.00335 0.00428 0.00488

δPL 0.00129 0.00117 0.00045 0.00080 0.00045 0.00022 0.00044

δAsyst
L 0.00924 0.02919 0.00782 0.00390 0.00920 0.01732 0.01870

Table 5.15: BLAST left sector yields and asymmetries for Q2 = 0.123GeV 2, and for each W [GeV ]
bin over the ∆ region.
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W [GeV ] 1.096 1.138 1.184 1.22 1.258 1.303 1.33

Y ++ 0.18021 0.27940 0.47576 0.59221 0.44857 0.35586 0.33091

Y −− 0.19382 0.26941 0.47560 0.59087 0.45646 0.34962 0.34049

Y +− 0.20791 0.27453 0.39624 0.48966 0.40229 0.32604 0.30489

Y −+ 0.20702 0.26574 0.39891 0.50581 0.39574 0.33138 0.32249

Y ++
empty 0.02922 0.02666 0.04030 0.03921 0.06149 0.06222 0.07196

Y −−
empty 0.03233 0.03674 0.05612 0.03926 0.05209 0.06505 0.08732

Y +−
empty 0.03007 0.03845 0.04375 0.05484 0.05657 0.07025 0.09330

Y −+
empty 0.03228 0.03984 0.04407 0.04035 0.05547 0.04765 0.08750

Y ++
rad 0.09101 0.08058 0.07163 0.05863 0.04674 0.03562 0.02758

Y −−
rad 0.09936 0.08305 0.07759 0.06196 0.04978 0.03559 0.03064

Y +−
rad 0.11075 0.10054 0.09201 0.07505 0.06252 0.05236 0.04038

Y −+
rad 0.11061 0.09990 0.09361 0.07511 0.06421 0.05234 0.04272

AR -0.11230 0.19230 0.27915 0.25117 0.20143 0.14274 0.20598

δAstat
R 0.01496 0.01695 0.01076 0.00812 0.01101 0.01488 0.01929

Abeam
R -0.04268 0.00258 0.00362 0.01738 -0.01934 0.02139 0.01793

δAbeam
R 0.00788 0.00658 0.00501 0.00432 0.00522 0.00636 0.00753

Atarget
R -0.03755 0.04070 -0.00320 -0.01446 -0.00180 0.00163 -0.05842

δAtarget
R 0.00516 0.00427 0.00325 0.00280 0.00340 0.00412 0.00487

δPR 0.00086 0.00124 0.00214 0.00199 0.00164 0.00112 0.00178

δAsyst
R 0.02947 0.02120 0.00383 0.01202 0.01031 0.01122 0.03175

Table 5.16: BLAST right sector yields and asymmetries for Q2 = 0.123GeV 2, and for each
W [GeV ] bin over the ∆ region.
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W [GeV ] 1.096 1.138 1.184 1.22 1.258 1.303 1.33

Y ++ 0.12193 0.17003 0.24314 0.30696 0.25401 0.19181 0.14149

Y −− 0.12634 0.16640 0.25985 0.29603 0.25155 0.19550 0.14241

Y +− 0.14037 0.17530 0.24975 0.29073 0.25744 0.19420 0.15312

Y −+ 0.14539 0.17692 0.24330 0.29683 0.25120 0.19703 0.15086

Y ++
empty 0.02666 0.03409 0.02703 0.03239 0.03640 0.04310 0.04249

Y −−
empty 0.02755 0.02365 0.02189 0.02617 0.03737 0.03510 0.03888

Y +−
empty 0.03167 0.02797 0.03315 0.03142 0.03537 0.04042 0.04498

Y −+
empty 0.02216 0.02152 0.03113 0.03241 0.03382 0.04304 0.04022

Y ++
rad 0.05754 0.03807 0.02607 0.01872 0.01391 0.00908 0.00539

Y −−
rad 0.05580 0.03930 0.02621 0.02025 0.01337 0.00861 0.00474

Y +−
rad 0.07163 0.05145 0.03654 0.02804 0.02093 0.01454 0.00868

Y −+
rad 0.07248 0.05105 0.03705 0.02712 0.02100 0.01570 0.00878

AL -0.16558 0.00507 0.11466 0.07053 0.01622 0.04542 -0.04219

δAstat
L 0.02074 0.02094 0.01341 0.01117 0.01368 0.01919 0.02698

Abeam
L 0.00299 0.01836 -0.05226 0.03185 -0.00876 -0.00290 -0.01622

δAbeam
L 0.00681 0.00559 0.00434 0.00394 0.00451 0.00575 0.00757

Atarget
L -0.04551 0.00700 -0.02316 0.00902 0.02021 -0.02201 0.00687

δAtarget
L 0.00681 0.00559 0.00434 0.00394 0.00451 0.00575 0.00757

δPL 0.00192 0.00017 0.00122 0.00089 0.00022 0.00049 0.00036

δAsyst
L 0.02371 0.01019 0.02964 0.01718 0.01142 0.01151 0.00914

Table 5.17: BLAST left sector yields and asymmetries for Q2 = 0.175GeV 2, and for each W [GeV ]
bin over the ∆ region.
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W [GeV ] 1.096 1.138 1.184 1.22 1.258 1.303 1.33

Y ++ 0.13347 0.18118 0.28470 0.37999 0.32299 0.25012 0.17836

Y −− 0.12617 0.17522 0.29897 0.38990 0.32881 0.25413 0.17649

Y +− 0.14546 0.17445 0.24913 0.31606 0.28037 0.22681 0.16788

Y −+ 0.14839 0.18093 0.25263 0.31669 0.29305 0.23121 0.16645

Y ++
empty 0.02886 0.02873 0.02910 0.03689 0.03726 0.05224 0.04578

Y −−
empty 0.02491 0.02629 0.03800 0.03133 0.04114 0.05071 0.04441

Y +−
empty 0.02686 0.02970 0.03056 0.04560 0.04202 0.05262 0.05410

Y −+
empty 0.02690 0.02741 0.02856 0.03420 0.04112 0.06367 0.05009

Y ++
rad 0.05050 0.03402 0.02500 0.01893 0.01382 0.00889 0.00568

Y −−
rad 0.04930 0.03388 0.02426 0.01712 0.01411 0.00914 0.00569

Y +−
rad 0.06444 0.04689 0.03507 0.02807 0.02078 0.01683 0.00962

Y −+
rad 0.06486 0.04884 0.03792 0.02909 0.02343 0.01682 0.00998

AR -0.14284 0.13216 0.21731 0.27230 0.18667 0.20253 0.17162

δAstat
R 0.01958 0.01988 0.01272 0.01018 0.01170 0.01730 0.02411

Abeam
R 0.04940 0.04309 -0.02222 -0.01459 0.01311 0.00109 0.00187

δAbeam
R 0.01049 0.00855 0.00643 0.00556 0.00625 0.00810 0.01080

Atarget
R 0.02079 -0.00177 -0.03641 -0.01655 -0.03446 -0.02312 0.01458

δAtarget
R 0.00676 0.00551 0.00420 0.00362 0.00405 0.00526 0.00702

δPR 0.00110 0.00077 0.00164 0.00210 0.00149 0.00162 0.00145

δAsyst
R 0.02779 0.02235 0.02216 0.01162 0.01916 0.01210 0.00775

Table 5.18: BLAST right sector yields and asymmetries for Q2 = 0.175GeV 2, and for each
W [GeV ] bin over the ∆ region.
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W [GeV ] 1.096 1.138 1.184 1.22 1.258 1.303 1.33

Y ++ 0.06624 0.08202 0.10728 0.14341 0.14205 0.13876 0.02567

Y −− 0.06541 0.07864 0.11167 0.14020 0.14008 0.13807 0.02612

Y +− 0.07213 0.08410 0.10938 0.13915 0.13604 0.14852 0.02816

Y −+ 0.07006 0.08214 0.10957 0.13111 0.13121 0.14416 0.02869

Y ++
empty 0.01546 0.01327 0.01436 0.02338 0.03543 0.05004 0.00645

Y −−
empty 0.01270 0.01560 0.01283 0.01749 0.03548 0.04152 0.01145

Y +−
empty 0.01552 0.01479 0.02009 0.01959 0.02958 0.04276 0.01663

Y −+
empty 0.01332 0.01908 0.01306 0.02165 0.03254 0.05355 0.01063

Y ++
rad 0.02094 0.01224 0.00680 0.00411 0.00256 0.00220 0.00048

Y −−
rad 0.02234 0.01209 0.00657 0.00405 0.00250 0.00203 0.00034

Y +−
rad 0.02912 0.01693 0.01027 0.00623 0.00523 0.00367 0.00085

Y −+
rad 0.03042 0.01773 0.00961 0.00661 0.00481 0.00378 0.00068

AL -0.08465 0.08849 0.06741 0.07608 0.05128 -0.03970 0.15263

δAstat
L 0.02940 0.03236 0.02093 0.01838 0.02420 0.02999 0.08682

Abeam
L -0.01205 0.01107 -0.02252 -0.02074 -0.01419 -0.02049 0.00264

δAbeam
L 0.00986 0.00860 0.00685 0.00617 0.00709 0.00816 0.02247

Atarget
L 0.02823 0.04163 -0.02463 0.04826 0.03374 0.02833 -0.03479

δAtarget
L 0.00986 0.00859 0.00685 0.00617 0.00709 0.00816 0.02247

δPL 0.00098 0.00090 0.00098 0.00105 0.00074 0.00028 0.00177

δAsyst
L 0.01593 0.02234 0.01732 0.02723 0.01898 0.01812 0.01816

Table 5.19: BLAST left sector yields and asymmetries for Q2 = 0.24GeV 2, and for each W [GeV ]
bin over the ∆ region.
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W [GeV ] 1.096 1.138 1.184 1.22 1.258 1.303 1.33

Y ++ 0.08467 0.10337 0.13164 0.14856 0.15136 0.15755 0.03268

Y −− 0.08179 0.10399 0.13432 0.14855 0.14827 0.15578 0.03140

Y +− 0.09664 0.10357 0.11330 0.12428 0.12741 0.14882 0.03165

Y −+ 0.09887 0.10039 0.11499 0.12459 0.12216 0.14870 0.02566

Y ++
empty 0.01972 0.02228 0.01741 0.02325 0.03105 0.04566 0.00706

Y −−
empty 0.01761 0.01711 0.02277 0.02051 0.02881 0.04605 0.00767

Y +−
empty 0.02144 0.02489 0.01750 0.02403 0.03352 0.04930 0.00591

Y −+
empty 0.01947 0.02049 0.02229 0.02318 0.03215 0.04214 0.01101

Y ++
rad 0.02266 0.01450 0.00815 0.00626 0.00365 0.00314 0.00050

Y −−
rad 0.02306 0.01341 0.00849 0.00532 0.00390 0.00274 0.00059

Y +−
rad 0.03419 0.02160 0.01282 0.00953 0.00761 0.00606 0.00116

Y −+
rad 0.03646 0.02082 0.01388 0.00951 0.00701 0.00585 0.00087

AR -0.16723 0.17382 0.23771 0.25961 0.29194 0.09803 0.21278

δAstat
R 0.02523 0.02877 0.02032 0.01981 0.02373 0.02729 0.05321

Abeam
R 0.03754 -0.02382 -0.00478 0.00140 -0.01076 0.00833 -0.11633

δAbeam
R 0.01297 0.01203 0.01011 0.00977 0.01099 0.01177 0.02641

Atarget
R 0.00463 0.01632 -0.02093 -0.00133 0.04261 0.00962 0.21162

δAtarget
R 0.00837 0.00785 0.00657 0.00635 0.00716 0.00764 0.01762

δPR 0.00128 0.00120 0.00185 0.00200 0.00231 0.00083 0.00171

δAsyst
R 0.01964 0.01501 0.01127 0.00224 0.02288 0.00665 0.12511

Table 5.20: BLAST right sector yields and asymmetries for Q2 = 0.24GeV 2, and for each W [GeV ]
bin over the ∆ region.
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W [GeV ] 1.096 1.138 1.184 1.22 1.258 1.303 1.33

Y ++ 0.02598 0.04931 0.10313 0.11122 0.05334 0.00942 -

Y −− 0.02923 0.05135 0.09785 0.10884 0.05142 0.00855 -

Y +− 0.03375 0.05447 0.10077 0.10996 0.05038 0.00835 -

Y −+ 0.03225 0.05537 0.10669 0.10379 0.05055 0.00736 -

Y ++
empty 0.00730 0.01595 0.01960 0.02070 0.02045 0.00572 -

Y −−
empty 0.00490 0.01635 0.02176 0.02189 0.01157 0.00314 -

Y +−
empty 0.01195 0.01133 0.01528 0.01898 0.01220 0.00357 -

Y −+
empty 0.00679 0.01691 0.02434 0.02113 0.01370 0.00371 -

Y ++
rad 0.00657 0.00562 0.00402 0.00235 0.00068 0.00004 -

Y −−
rad 0.00657 0.00642 0.00408 0.00216 0.00056 0.00004 -

Y +−
rad 0.01008 0.00914 0.00753 0.00470 0.00111 0.00001 -

Y −+
rad 0.01068 0.00981 0.00755 0.00413 0.00133 0.00006 -

AL -0.08767 -0.09892 -0.00757 0.04498 -0.01402 0.07188 -

δAstat
L 0.04994 0.05234 0.02550 0.02326 0.04304 0.17625 -

Abeam
L -0.11290 -0.01611 0.07175 -0.02241 0.03099 -0.01857 -

δAbeam
L 0.01594 0.01250 0.00790 0.00752 0.01297 0.05212 -

Atarget
L -0.04138 -0.04142 -0.00406 0.05062 0.02597 0.27168 -

δAtarget
L 0.01595 0.01250 0.00790 0.00752 0.01297 0.05225 -

δPL 0.00102 0.00088 0.00010 0.00052 0.00009 0.00120 -

δAsyst
L 0.06230 0.02304 0.03723 0.02868 0.02095 0.14106 -

Table 5.21: BLAST left sector yields and asymmetries for Q2 = 0.312GeV 2, and for each W [GeV ]
bin over the ∆ region.
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W [GeV ] 1.096 1.138 1.184 1.22 1.258 1.303 1.33

Y ++ 0.03378 0.05873 0.10431 0.11544 0.05301 0.00725 -

Y −− 0.03432 0.05779 0.10608 0.11808 0.05130 0.00756 -

Y +− 0.03987 0.06213 0.09251 0.09681 0.04385 0.00720 -

Y −+ 0.03998 0.05594 0.09361 0.09879 0.04514 0.00748 -

Y ++
empty 0.00888 0.01169 0.01656 0.01656 0.01899 0.00280 -

Y −−
empty 0.00729 0.01749 0.01988 0.01761 0.01296 0.00604 -

Y +−
empty 0.00936 0.01984 0.01861 0.01750 0.01774 0.00172 -

Y −+
empty 0.01165 0.00973 0.02216 0.01447 0.01473 0.00461 -

Y ++
rad 0.01290 0.01181 0.00969 0.00559 0.00122 0.00013 -

Y −−
rad 0.01660 0.01490 0.00915 0.00503 0.00141 0.00000 -

Y +−
rad 0.02062 0.01965 0.01441 0.00772 0.00200 0.00022 -

Y −+
rad 0.02091 0.01994 0.01469 0.00798 0.00224 0.00014 -

AR -0.11618 0.19951 0.26662 0.22567 0.26644 -0.28586 -

δAstat
R 0.04264 0.04443 0.02617 0.02176 0.05103 0.2129 -

Abeam
R -0.00821 -0.06137 -0.00422 -0.00371 0.05143 -0.00511 -

δAbeam
R 0.02200 0.01714 0.01199 0.01090 0.02198 0.08426 -

Atarget
R -0.01225 0.09020 -0.01822 -0.02563 0.00708 -0.09237 -

δAtarget
R 0.01432 0.01128 0.00780 0.00709 0.01414 0.05485 -

δPR 0.00089 0.00061 0.00186 0.00162 0.00199 0.00226 -

δAsyst
R 0.00769 0.05652 0.00987 0.01351 0.02697 0.04798 -

Table 5.22: BLAST right sector yields and asymmetries for Q2 = 0.312GeV 2, and for each
W [GeV ] bin over the ∆ region.
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Q2 [GeV 2] 0.115 0.153 0.213 0.276 0.325

Y ++ 2.25931 1.39387 0.72828 0.43890 0.17549

Y −− 2.24986 1.40882 0.72231 0.43856 0.17373

Y +− 2.29763 1.43833 0.73033 0.44317 0.18305

Y −+ 2.30537 1.42972 0.72402 0.42979 0.18393

Y ++
empty 0.34157 0.23441 0.14576 0.10557 0.04870

Y −−
empty 0.36013 0.19453 0.13074 0.09387 0.05561

Y +−
empty 0.37998 0.23417 0.15418 0.09391 0.04917

Y −+
empty 0.38703 0.22561 0.15463 0.09147 0.05265

Y ++
rad 0.27497 0.16940 0.06507 0.01679 0.01033

Y −−
rad 0.27965 0.16997 0.06320 0.01670 0.01110

Y +−
rad 0.33115 0.22535 0.09449 0.03108 0.02080

Y −+
rad 0.32992 0.22652 0.09610 0.03042 0.02115

AL 0.02257 0.03639 0.08460 0.02704 0.00109

δAstat
L 0.00509 0.00650 0.01037 0.01310 0.02572

Abeam
L 0.00457 -0.00999 -0.00029 -0.02007 0.01116

δAbeam
L 0.00155 0.00195 0.00290 0.00393 0.00690

Atarget
L 0.00045 -0.00269 0.01083 0.02112 0.00373

δAtarget
L 0.00155 0.00195 0.00290 0.00393 0.00690

δPL 0.00019 0.00036 0.00108 0.00047 0.00005

δAsyst
L 0.00239 0.00537 0.00572 0.01511 0.00610

Table 5.23: BLAST left sector yields and asymmetries for each Q2 [GeV 2] bin over the ∆ region,
and for x = [0.08, 0.48].
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Q2 [GeV 2] 0.115 0.153 0.213 0.276 0.325

Y ++ 2.37094 1.64190 0.88535 0.46715 0.18231

Y −− 2.38106 1.66964 0.88067 0.46567 0.18428

Y +− 2.12929 1.48592 0.78355 0.41048 0.17862

Y −+ 2.15012 1.49565 0.79518 0.40431 0.17864

Y ++
empty 0.32878 0.22771 0.15087 0.10922 0.03470

Y −−
empty 0.33861 0.23379 0.14684 0.09802 0.04391

Y +−
empty 0.37061 0.25648 0.16984 0.11031 0.04535

Y −+
empty 0.33566 0.24239 0.14425 0.12132 0.03548

Y ++
rad 0.24375 0.15204 0.05940 0.01630 0.00789

Y −−
rad 0.24566 0.15311 0.05797 0.01638 0.00865

Y +−
rad 0.31106 0.21142 0.09604 0.03127 0.01997

Y −+
rad 0.30712 0.21730 0.09932 0.03211 0.02047

AR 0.18201 0.19878 0.21672 0.26582 0.13007

δAstat
R 0.00513 0.00600 0.00894 0.01409 0.02185

Abeam
R 0.00282 -0.00682 0.01236 -0.00747 -0.00715

δAbeam
R 0.00153 0.00184 0.00265 0.00408 0.00604

Atarget
R -0.00813 -0.01415 -0.00521 0.01228 -0.00734

δAtarget
R 0.00153 0.00184 0.00265 0.00408 0.00604

δPR 0.00139 0.00156 0.00169 0.00214 0.00102

δAsyst
R 0.00467 0.00829 0.00715 0.00775 0.00541

Table 5.24: BLAST right sector yields and asymmetries for each Q2 [GeV 2] bin over the ∆ region,
and for x = [0.08, 0.48].
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x 0.103 0.146 0.2 0.258 0.317 0.385 0.438

Y ++ 0.68076 1.44269 0.94318 0.30365 0.04427 - -

Y −− 0.68522 1.45509 0.93173 0.30666 0.04674 - -

Y +− 0.71320 1.47487 0.95255 0.31618 0.05131 - -

Y −+ 0.71616 1.46945 0.94764 0.32264 0.05635 - -

Y ++
empty 0.13821 0.21858 0.10935 0.04712 0.00840 - -

Y −−
empty 0.13980 0.20812 0.10431 0.04970 0.00767 - -

Y +−
empty 0.15098 0.24046 0.11499 0.04128 0.01318 - -

Y −+
empty 0.15437 0.22266 0.12235 0.05175 0.00602 - -

Y ++
rad 0.03589 0.12809 0.14193 0.06662 0.02147 - -

Y −−
rad 0.03537 0.13164 0.14512 0.06771 0.01959 - -

Y +−
rad 0.04519 0.17227 0.17752 0.08164 0.02573 - -

Y −+
rad 0.04488 0.17427 0.17910 0.08235 0.02711 - -

AL -0.01563 0.03286 0.04721 -0.00669 -0.04697 - -

δAstat
L 0.00968 0.00610 0.00721 0.01625 0.04996 - -

Abeam
L -0.00430 -0.00729 0.00394 0.00654 0.03160 - -

δAbeam
L 0.00374 0.00191 0.00226 0.00410 0.01060 - -

Atarget
L -0.00318 -0.00286 0.00987 -0.01798 -0.09256 - -

δAtarget
L 0.00374 0.00191 0.00226 0.00410 0.01059 - -

δPL 0.00010 0.00029 0.00054 0.00007 0.00163 - -

δAsyst
L 0.00277 0.00407 0.00553 0.00992 0.05069 - -

Table 5.25: BLAST left sector yields and asymmetries for 0.08 < Q2 < 0.18GeV 2, and for each x
bin over the ∆ region.
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x 0.103 0.146 0.2 0.258 0.317 0.385 0.438

Y ++ 0.65667 1.60814 1.05428 0.31185 0.04638 - -

Y −− 0.65942 1.60794 1.05986 0.31445 0.04339 - -

Y +− 0.64743 1.41149 0.91052 0.30966 0.04866 - -

Y −+ 0.64075 1.42102 0.91579 0.30736 0.04875 - -

Y ++
empty 0.12298 0.22040 0.09559 0.03957 0.00608 - -

Y −−
empty 0.11740 0.23379 0.11211 0.04290 0.00767 - -

Y +−
empty 0.14309 0.24514 0.11339 0.03808 0.00912 - -

Y −+
empty 0.12568 0.22266 0.10338 0.04868 0.00474 - -

Y ++
rad 0.03103 0.11956 0.12833 0.08271 0.01697 - -

Y −−
rad 0.03150 0.12181 0.12668 0.08425 0.01802 - -

Y +−
rad 0.04500 0.17148 0.16912 0.10967 0.02162 - -

Y −+
rad 0.04494 0.17204 0.17027 0.10818 0.02107 - -

AR 0.08023 0.20473 0.24303 0.17412 0.00357 - -

δAstat
R 0.01004 0.00606 0.00689 0.01569 0.04958 - -

Abeam
R 0.00322 0.00384 -0.00017 -0.00910 0.04042 - -

δAbeam
R 0.00372 0.00187 0.00217 0.00401 0.01076 - -

Atarget
R -0.02510 -0.00367 -0.00612 -0.00056 0.03802 - -

δAtarget
R 0.00372 0.00187 0.00217 0.00401 0.01076 - -

δPR 0.00075 0.00162 0.00185 0.00090 0.00024 - -

δAsyst
R 0.01313 0.00320 0.00367 0.00481 0.02875 - -

Table 5.26: BLAST right sector yields and asymmetries for 0.08 < Q2 < 0.18GeV 2, and for each
x bin over the ∆ region.
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x 0.103 0.146 0.2 0.258 0.317 0.385 0.438

Y ++ - 0.02838 0.39870 0.57691 0.40939 0.21409 0.07678

Y −− - 0.02714 0.39340 0.57862 0.39992 0.20862 0.08151

Y +− - 0.03172 0.39688 0.57239 0.40826 0.22048 0.08290

Y −+ - 0.02969 0.39694 0.55794 0.40133 0.22081 0.08673

Y ++
empty - 0.00803 0.08840 0.10411 0.07537 0.04420 0.02788

Y −−
empty - 0.01019 0.07600 0.09487 0.06656 0.04668 0.02353

Y +−
empty - 0.00751 0.09354 0.09662 0.07419 0.04363 0.02699

Y −+
empty - 0.01140 0.09775 0.10287 0.05906 0.05854 0.02037

Y ++
rad - 0.00089 0.01505 0.02760 0.03636 0.02690 0.00893

Y −−
rad - 0.00069 0.01443 0.02755 0.03710 0.02614 0.00928

Y +−
rad - 0.00164 0.02250 0.04221 0.05278 0.03821 0.01542

Y −+
rad - 0.00154 0.02282 0.04034 0.05124 0.03922 0.01606

AL - -0.08925 0.06608 0.05653 0.03449 0.05891 -0.02195

δAstat
L - 0.06502 0.01387 0.01006 0.01235 0.02085 0.04346

Abeam
L - -0.02040 0.00901 -0.01745 0.00386 0.01832 -0.00859

δAbeam
L - 0.01707 0.00409 0.00315 0.00373 0.00568 0.01054

Atarget
L - 0.08454 0.00881 0.01374 0.02493 0.01627 -0.08161

δAtarget
L - 0.01706 0.00409 0.00315 0.00373 0.00568 0.01054

δPL - 0.00108 0.00085 0.00073 0.00046 0.00063 0.00018

δAsyst
L - 0.04507 0.00659 0.01153 0.01308 0.01271 0.04251

Table 5.27: BLAST left sector yields and asymmetries for 0.18 < Q2 < 0.38GeV 2, and for each x
bin over the ∆ region.
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x 0.103 0.146 0.2 0.258 0.317 0.385 0.438

Y ++ - 0.03162 0.47936 0.67306 0.46015 0.23984 0.08875

Y −− - 0.03097 0.49042 0.68536 0.46006 0.24057 0.08588

Y +− - 0.03061 0.43966 0.57224 0.40443 0.23644 0.09357

Y −+ - 0.02750 0.44618 0.57933 0.40971 0.23793 0.09071

Y ++
empty - 0.01181 0.08865 0.11069 0.07622 0.05224 0.02118

Y −−
empty - 0.00755 0.08267 0.11853 0.06581 0.04655 0.01937

Y +−
empty - 0.00801 0.10624 0.11634 0.08418 0.05336 0.02760

Y −+
empty - 0.00896 0.10326 0.10697 0.07187 0.05444 0.02152

Y ++
rad - 0.00124 0.01774 0.03153 0.04013 0.02826 0.00871

Y −−
rad - 0.00127 0.01720 0.03192 0.03915 0.02738 0.01023

Y +−
rad - 0.00185 0.02845 0.04837 0.05902 0.04269 0.01728

Y −+
rad - 0.00183 0.02910 0.05080 0.05917 0.04398 0.01793

AR - 0.07771 0.19496 0.23260 0.23900 0.14162 0.13146

δAstat
R - 0.06358 0.01197 0.00966 0.01175 0.01925 0.03457

Abeam
R - -0.06119 -0.00634 -0.00517 0.00765 0.00208 0.00012

δAbeam
R - 0.01727 0.00369 0.00304 0.00361 0.00521 0.00904

Atarget
R - 0.10215 -0.02436 -0.01911 -0.00734 -0.00611 0.04582

δAtarget
R - 0.01727 0.00369 0.00304 0.00361 0.00521 0.00904

δPR - 0.00065 0.00153 0.00179 0.00177 0.00099 0.00083

δAsyst
R - 0.06169 0.01313 0.01041 0.00577 0.00349 0.02375

Table 5.28: BLAST right sector yields and asymmetries for 0.18 < Q2 < 0.38GeV 2, and for each
x bin over the ∆ region.
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APPENDIX D

Spin Correlation Parameters Values and Total Errors

In this appendix we present the values and errors for the results given in section 5.2.
The following notation is used:

W : average W value
Q2 : average Q2 value
x : average x value
x∗L,R : average target spin angle x−component in the

q−system for left and right sectors
z∗L,R : average target spin angle z−component in the

q−system for left and right sectors
ǫ : average virtual photon transverse polarization
ω : average virtual photon energy
γ : average γ value
ATT ′ : extracted ATT ′ value
δAstat

TT ′ : ATT ′ statistical errors

δAsyst
TT ′ : ATT ′ systematical errors

ATL′ : extracted ATL′ value
δAstat

TL′ : ATL′ statistical errors

δAsyst
TL′ : ATL′ systematical errors

g1,2/σ0 : extracted proton spin-structure functions
over the unpolarized cross section

δgstat
1,2 : g1,2/σ0 statistical errors

δgsyst
1,2 : g1,2/σ0 systematical errors
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W [GeV ] 1.096 1.138 1.184 1.22 1.258 1.303 1.33

x∗L 0.99362 0.98992 0.97894 0.96385 0.94444 0.92226 0.89883

x∗R -0.09414 -0.18610 -0.26624 -0.33445 -0.39591 -0.45600 -0.50717

z∗L -0.00300 0.08731 0.17109 0.24215 0.30876 0.36967 0.42344

z∗R 0.98923 0.97634 0.95751 0.93582 0.91143 0.88289 0.85478

ǫ 0.83852 0.80842 0.77071 0.72617 0.67210 0.60434 0.52011

ATT ′ -0.12421 0.17616 0.28963 0.27125 0.21139 0.14504 0.20406

δAstat
TT ′ 0.01526 0.01749 0.01117 0.00850 0.01152 0.01597 0.02030

δAsyst
TT ′ 0.08353 0.01872 0.07068 0.07151 0.05124 0.03362 0.05916

ATL′ -0.11226 -0.10912 -0.00687 0.00797 -0.02212 -0.03220 -0.06221

δAstat
TL′ 0.01617 0.01761 0.01027 0.00792 0.01025 0.01511 0.01782

δAsyst
TL′ 0.02165 0.03897 0.05464 0.04910 0.04819 0.02219 0.04004

Table 5.29: Extracted spin-correlation parameters for Q2 = 0.123GeV 2, and for each W [GeV ] bin
over the ∆ region.
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W [GeV ] 1.096 1.138 1.184 1.22 1.258 1.303 1.33

x∗L 0.99226 0.98733 0.97700 0.96228 0.94401 0.92191 0.89819

x∗R -0.10526 -0.18932 -0.26651 -0.33094 -0.39209 -0.44811 -0.49838

z∗L 0.01838 0.10025 0.17589 0.24316 0.30673 0.36663 0.42159

z∗R 0.98693 0.97453 0.95635 0.93622 0.91204 0.88604 0.85878

ǫ 0.77936 0.73938 0.69102 0.63540 0.57295 0.50476 0.42919

ATT ′ -0.16221 0.13397 0.24751 0.29079 0.18607 0.21105 0.13563

δAstat
TT ′ 0.02004 0.02057 0.01329 0.01080 0.01269 0.01875 0.02642

δAsyst
TT ′ 0.08604 0.01311 0.07072 0.06996 0.03960 0.05323 0.02842

ATL′ -0.16387 -0.00846 0.07280 -0.00017 -0.04326 -0.03466 -0.11063

δAstat
TL′ 0.02088 0.02085 0.01321 0.01089 0.01313 0.01832 0.02547

δAsyst
TL′ 0.02362 0.01488 0.03595 0.04146 0.02593 0.02532 0.03212

Table 5.30: Extracted spin-correlation parameters for Q2 = 0.175GeV 2, and for each W [GeV ] bin
over the ∆ region.
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W [GeV ] 1.096 1.138 1.184 1.22 1.258 1.303 1.33

x∗L 0.98955 0.98295 0.97207 0.95527 0.93393 0.91157 0.89622

x∗R -0.14602 -0.21400 -0.28423 -0.35220 -0.41775 -0.46705 -0.50073

z∗L 0.06072 0.13105 0.19768 0.26820 0.33382 0.39032 0.42476

z∗R 0.98127 0.96869 0.95023 0.92721 0.89963 0.87512 0.85646

ǫ 0.69572 0.65802 0.60862 0.53765 0.45368 0.38360 0.35453

ATT ′ -0.18149 0.19363 0.25536 0.28034 0.30019 0.07226 0.27250

δAstat
TT ′ 0.02604 0.02998 0.02125 0.02062 0.02518 0.02962 0.06710

δAsyst
TT ′ 0.05014 0.04752 0.06334 0.07152 0.07395 0.01332 0.09306

ATL′ -0.07441 0.06421 0.01741 0.00093 -0.05238 -0.07449 0.04115

δAstat
TL′ 0.02946 0.03212 0.02060 0.01808 0.02344 0.02857 0.07859

δAsyst
TL′ 0.02474 0.02858 0.03110 0.03180 0.03915 0.01091 0.02303

Table 5.31: Extracted spin-correlation parameters for Q2 = 0.24GeV 2, and for each W [GeV ] bin
over the ∆ region.
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W [GeV ] 1.096 1.138 1.184 1.22 1.258 1.303 1.33

x∗L 0.98434 0.97487 0.96120 0.94463 0.92471 0.90263 0.87807

x∗R -0.20889 -0.26948 -0.32681 -0.380361 -0.42498 -0.47240 -0.51960

z∗L 0.12078 0.18232 0.24364 0.30032 0.35563 0.41095 0.45865

z∗R 0.96986 0.95510 0.93665 0.91559 0.89510 0.86911 0.84557

ǫ 0.59804 0.54943 0.50155 0.44933 0.39198 0.33217 -

ATT ′ -0.13539 0.17123 0.25900 0.23520 0.24562 -0.22896 -

δAstat
TT ′ 0.04447 0.04697 0.02735 0.02318 0.05252 0.21805 -

δAsyst
TT ′ 0.04264 0.01443 0.03403 0.04996 0.04442 0.02447 -

ATL′ -0.07245 -0.13350 -0.07353 -0.02715 -0.10963 0.18388 -

δAstat
TL′ 0.04964 0.05147 0.02505 0.02257 0.04286 0.17711 -

δAsyst
TL′ 0.01641 0.01541 0.03095 0.02721 0.03114 0.04690 -

Table 5.32: Extracted spin-correlation parameters for Q2 = 0.312GeV 2, and for each W [GeV ] bin
over the ∆ region.
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Q2 [GeV 2] 0.115 0.153 0.213 0.276 0.325

x∗L 0.95113 0.95414 0.95192 0.94343 0.95664

x∗R -0.34964 -0.34178 -0.33282 -0.37343 -0.32166

z∗L 0.26355 0.24833 0.25834 0.29453 0.25143

z∗R 0.92330 0.92529 0.92860 0.91549 0.93608

ǫ 0.68176 0.62743 0.56441 0.47396 0.48192

ω [GeV ] 0.42055 0.43107 0.44496 0.48280 0.44813

γ 0.85348 0.98915 1.09949 1.13248 1.32120

x 0.15540 0.21529 0.27247 0.32382 0.41244

g1/σ0 -0.14127 -0.13558 -0.15645 -0.10252 -0.02688

δgstat
1 0.00659 0.00688 0.01003 0.01240 0.01686

δgsyst
1 0.04396 0.04760 0.05670 0.04667 0.03178

g2/σ0 0.19640 0.16184 0.12472 0.17701 0.05697

δgstat
2 0.00775 0.00697 0.01003 0.01083 0.01183

δgsyst
2 0.13841 0.09227 0.05860 0.06710 0.03668

Table 5.33: Extracted spin-structure functions over σ0 for each Q2 [GeV 2] bin over the ∆ region.
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x 0.103 0.146 0.2 0.258 0.317 0.385 0.438

x∗L 0.28194 0.94192 0.97293 0.98846 0.99185 - -

x∗R -0.48953 -0.39684 -0.28112 -0.17274 -0.11874 - -

z∗L 0.78852 0.30734 0.18796 0.08381 0.03819 - -

z∗R 0.86489 0.90836 0.95044 0.97682 0.98547 - -

ǫ 0.52647 0.64368 0.72682 0.78128 0.78646 - -

ω [GeV ] 0.54450 0.44958 0.36606 0.30011 0.27757 - -

γ 0.41433 0.80188 1.03719 1.28982 1.46232 - -

g1/σ0 0.08622 -0.17855 -0.17008 -0.06312 0.02413 - -

δgstat
1 0.02338 0.00833 0.00723 0.01204 0.02970 - -

δgsyst
1 0.03116 0.05183 0.06915 0.04166 0.08419 - -

g2/σ0 0.04711 0.25617 0.17128 0.08386 0.01031 - -

δgstat
2 0.06457 0.01048 0.00696 0.00918 0.01993 - -

δgsyst
2 0.17439 0.15628 0.12734 0.06207 0.08308 - -

Table 5.34: Extracted spin-structure functions over σ0 for each x bin over the ∆ region, and for
0.08 < Q2 < 0.18 [GeV 2]; 〈Q2〉 = 0.129 [GeV 2].
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x 0.103 0.146 0.2 0.258 0.317 0.385 0.438

x∗L - 0.90050 0.92736 0.94955 0.96264 0.96992 0.974322

x∗R - -0.48687 -0.42420 -0.35336 -0.29879 -0.26007 -0.25276

z∗L - 0.41500 0.3483459 0.27660 0.22242 0.18934 0.17614

z∗R - 0.86411 0.89558 0.92436 0.94240 0.95395 0.95774

ǫ - 0.42513 0.49321 0.54729 0.57158 0.57786 0.56037

ω [GeV ] - 0.57193 0.51448 0.45932 0.42134 0.39774 0.39134

γ - 0.75391 0.89000 1.05626 1.22177 1.36288 1.46585

g1/σ0 - 0.09192 -0.17566 -0.14537 -0.09949 -0.07021 -0.01305

δgstat
1 - 0.10230 0.01679 0.01005 0.00979 0.01317 0.02272

δgsyst
1 - 0.07838 0.04793 0.04997 0.04453 0.04001 0.06586

g2/σ0 - 0.24592 0.19477 0.16393 0.12283 0.04485 0.04474

δgstat
2 - 0.14230 0.01936 0.00944 0.00779 0.00916 0.01383

δgsyst
2 - 0.12534 0.07004 0.06820 0.05740 0.03778 0.06741

Table 5.35: Extracted spin-structure functions over σ0 for each x bin over the ∆ region, and for
0.18 < Q2 < 0.38 [GeV 2]; 〈Q2〉 = 0.225 [GeV 2].
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APPENDIX E

Asymmetries Values and Errors (Extra Cases)

Note that the notation in this appendix is the same as Appendices C,D.

Q2 [GeV 2] 0.115 0.153 0.213 0.276 0.325

Y ++ 2.11020 1.23046 0.41986 0.09438 -

Y −− 2.09916 1.24172 0.41867 0.09535 -

Y +− 2.14945 1.25796 0.42148 0.09875 -

Y −+ 2.15006 1.24373 0.40995 0.09016 -

Y ++
empty 0.29639 0.20372 0.09802 0.03080 -

Y −−
empty 0.30703 0.17138 0.08946 0.03133 -

Y +−
empty 0.32686 0.20139 0.09428 0.03229 -

Y −+
empty 0.33002 0.19921 0.10236 0.03074 -

Y ++
rad 0.27023 0.11407 0.01532 0.00115 -

Y −−
rad 0.27577 0.11543 0.01434 0.00109 -

Y +−
rad 0.32637 0.15421 0.02428 0.00279 -

Y −+
rad 0.32453 0.15694 0.02442 0.00236 -

AL 0.02098 0.03952 0.05445 0.03497 -

δAstat
L 0.00511 0.00656 0.01302 0.03459 -

Abeam
L 0.00168 -0.00638 -0.00855 -0.04249 -

δAbeam
L 0.00157 0.00208 0.00398 0.01018 -

Atarget
L 0.00150 0.00074 0.01052 0.03385 -

δAtarget
L 0.00157 0.00208 0.00398 0.01018 -

δPL 0.00024 0.00046 0.00063 0.00041 -

δAsyst
L 0.00239 0.00538 0.00565 0.01510 -

Table 5.36: BLAST left sector yields and asymmetries for each Q2 [GeV 2] bin over the ∆ region,
and for x = [0.08, 0.28].
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Q2 [GeV 2] 0.115 0.153 0.213 0.276 0.325

Y ++ 2.22461 1.46770 0.49300 0.10485 -

Y −− 2.23066 1.49453 0.49176 0.10222 -

Y +− 1.98650 1.30835 0.42324 0.08949 -

Y −+ 2.01035 1.31234 0.43135 0.08927 -

Y ++
empty 0.28092 0.19678 0.08901 0.03494 -

Y −−
empty 0.30237 0.21051 0.08695 0.03309 -

Y +−
empty 0.31909 0.22419 0.09841 0.03192 -

Y −+
empty 0.28890 0.21292 0.09467 0.03420 -

Y ++
rad 0.23975 0.10606 0.01577 0.00086 -

Y −−
rad 0.24183 0.10529 0.01463 0.00126 -

Y +−
rad 0.30690 0.15012 0.02794 0.00258 -

Y −+
rad 0.30348 0.15621 0.02822 0.00240 -

AR 0.18471 0.20574 0.23297 0.22276 -

δAstat
R 0.00269 0.00319 0.00622 0.01913 -

Abeam
R 0.00256 -0.00503 0.00688 0.01090 -

δAbeam
R 0.00155 0.00195 0.00369 0.01037 -

Atarget
L -0.00427 -0.00677 -0.00499 0.01295 -

δAtarget
R 0.00155 0.00195 0.00369 0.01037 -

δPR 0.00142 0.00158 0.00179 0.00171 -

δAsyst
R 0.00468 0.00829 0.00718 0.00764 -

Table 5.37: BLAST right sector yields and asymmetries for each Q2 [GeV 2] bin over the ∆ region,
and for x = [0.08, 0.28].

199



Q2 [GeV 2] 0.115 0.153 0.213 0.276 0.325

Y ++ 0.00831 0.15762 0.30841 0.34427 0.16050

Y −− 0.00776 0.16070 0.30363 0.34260 0.15595

Y +− 0.00767 0.17346 0.30884 0.34391 0.16085

Y −+ 0.00868 0.17987 0.31406 0.33892 0.16316

Y ++
empty 0.00012 0.03032 0.04773 0.07476 0.04237

Y −−
empty 0.00591 0.02227 0.04127 0.06253 0.04819

Y +−
empty 0.00061 0.02982 0.05990 0.06162 0.04116

Y −+
empty 0.00294 0.02382 0.05227 0.06072 0.04842

Y ++
rad 0.00473 0.05532 0.04974 0.01553 0.00684

Y −−
rad 0.00387 0.05454 0.04885 0.01550 0.00743

Y +−
rad 0.00478 0.07114 0.07021 0.02810 0.01427

Y −+
rad 0.00536 0.06957 0.07168 0.02786 0.01449

AL -0.55903 -0.01828 0.13049 0.02550 0.02659

δAstat
L 0.64499 0.02808 0.01537 0.01304 0.02501

Abeam
L 0.06835 0.00615 0.01021 -0.00323 0.01661

δAbeam
L 0.02937 0.00565 0.00422 0.00425 0.00723

Atarget
L -0.02032 -0.01756 -0.00044 0.00648 0.00542

δAtarget
L 0.02939 0.00565 0.00422 0.00425 0.00723

δPL 0.00648 0.00021 0.00151 0.00030 0.00031

δAsyst
L 0.00690 0.00537 0.00582 0.01510 0.00610

Table 5.38: BLAST left sector yields and asymmetries for each Q2 [GeV 2] bin over the ∆ region,
and for x = [0.28, 0.48].
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Q2 [GeV 2] 0.115 0.153 0.213 0.276 0.325

Y ++ 0.00863 0.16680 0.39235 0.36182 0.16229

Y −− 0.00769 0.16696 0.38890 0.36288 0.16447

Y +− 0.00898 0.17219 0.36030 0.32044 0.15295

Y −+ 0.00917 0.17677 0.36383 0.31440 0.15476

Y ++
empty 0.00024 0.02983 0.06186 0.07415 0.02898

Y −−
empty 0.00163 0.02189 0.05989 0.06480 0.03724

Y +−
empty 0.00135 0.02649 0.07136 0.07838 0.03734

Y −+
empty 0.00064 0.02690 0.04958 0.08711 0.02856

Y ++
rad 0.00400 0.04598 0.04362 0.01531 0.00526

Y −−
rad 0.00383 0.04782 0.04333 0.01504 0.00555

Y +−
rad 0.00415 0.06130 0.06810 0.02862 0.01340

Y −+
rad 0.00363 0.06108 0.07110 0.02949 0.01358

AR -0.21830 0.07755 0.19503 0.27772 0.13992

δAstat
R 0.13523 0.02431 0.01284 0.01426 0.02139

Abeam
R 0.03995 0.00824 0.00586 -0.00716 -0.00079

δAbeam
R 0.02356 0.00569 0.00382 0.00442 0.00635

Atarget
L 0.02604 -0.00866 -0.00006 0.00509 -0.00847

δAtarget
R 0.02356 0.00569 0.00382 0.00442 0.00635

δPR 0.00168 0.00060 0.00150 0.00213 0.00107

δAsyst
R 0.00414 0.04564 0.04402 0.05724 0.02268

Table 5.39: BLAST right sector yields and asymmetries for each Q2 [GeV 2] bin over the ∆ region,
and for x = [0.28, 0.48].
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Q2 [GeV 2] 0.115 0.153 0.213 0.276 0.325

x∗L 0.95097 0.94931 0.93345 0.91370 -

x∗R -0.35067 -0.36401 -0.40716 -0.45301 -

z∗L 0.26450 0.27264 0.32940 0.38337 -

z∗R 0.92303 0.91868 0.90238 0.88157 -

ǫ 0.69527 0.61152 0.49422 0.38370 -

ω [GeV ] 0.41029 0.44678 0.50361 0.55592 -

γ 0.87086 0.94003 0.95049 0.94110 -

x 0.15879 0.20396 0.23944 0.26195 -

g1/σ0 -0.14157 -0.15051 -0.16096 -0.11830 -

δgstat
1 0.00638 0.00730 0.01453 0.04354 -

δgsyst
1 0.04156 0.04363 0.05021 0.04544 -

g2/σ0 0.20174 0.18686 0.21381 0.23406 -

δgstat
2 0.00737 0.00783 0.01544 0.04678 -

δgsyst
2 0.13678 0.09328 0.05271 0.07200 -

Table 5.40: Extracted spin-structure functions over σ0 for each Q2 [GeV 2] bin over the ∆ region,
and x = [0.08, 0.28].
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Q2 [GeV 2] 0.115 0.153 0.213 0.276 0.325

x∗L 0.99357 0.98949 0.97777 0.95207 0.95404

x∗R -0.09659 -0.16256 -0.23909 -0.34970 -0.33277

z∗L 0.01065 0.07053 0.15895 0.26879 0.26216

z∗R 0.98924 0.97857 0.96167 0.92562 0.93246

ǫ 0.82525 0.75949 0.65283 0.49903 0.47279

ω [GeV ] 0.25352 0.30240 0.37177 0.46253 0.45683

γ 1.45478 1.38473 1.30095 1.18534 1.28923

x 0.28586 0.30671 0.33152 0.34090 0.40131

g1/σ0 0.37904 -0.01428 -0.14611 -0.09880 -0.04828

δgstat
1 0.33690 0.01757 0.01033 0.01138 0.01724

δgsyst
1 0.09213 0.02831 0.04754 0.03504 0.01247

g2/σ0 0.04326 0.03372 0.05687 0.16174 0.06029

δgstat
2 0.16581 0.01198 0.00748 0.00950 0.01248

δgsyst
2 0.00414 0.04564 0.04402 0.05724 0.02268

Table 5.41: Extracted spin-structure functions over σ0 for each Q2 [GeV 2] bin over the ∆ region,
and x = [0.28, 0.48].
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