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Abstract

This work reports a precision measurement of deuteron tensor analyzing powers T20
and T21 at the MIT-Bates Linear Accelerator Center. Data were collected simul-
taneously over a momentum transfer range of 2.15 to 4.5 fm−1 in the Bates Large
Acceptance Spectrometer Toroid (BLAST) with a highly polarized internal gas tar-
get. Deuterium form factors GC and GQ were separated using the new data with
better precision and the location of the first node of the deuteron monopole form
factor was confirmed. The new data provide strong constraints on the nuclear models
in a momentum transfer range covering the minima of T20 and the first node of GC .
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Chapter 1

Introduction

One of the principal goals of nuclear physics is to understand the nucleon-nucleon

(NN) interaction. The NN interaction is a particular manifestation of the strong

interaction described by Quantum Chromodynamics (QCD), in which the building

blocks of the world are quarks and gluons. The current understanding is that the

nuclear degrees of freedom are only the effective ones after the “freeze-out” of the

fundamental quark degrees of freedom. For instance, in the simplest form of the bag

models [1], hadrons serve as “bags” that confine the quarks and gluons. The quarks

move freely inside the bag, known as the asymptotic freedom of the strong interaction.

However, the freeze-out is not complete. For example in the Chiral bag model, pions

arise as Goldstone bosons to conserve the chiral symmetry at the boundary of the

bag [2]. At large inter-nucleon distances of the order of 2 fm ∼ 1/mπ, the NN

interaction is well understood in terms of model-independent one-pion exchange first

proposed by Yukawa 70 years ago [3]. At shorter ranges, the nucleons themselves have

substantial overlap, and therefore the underlying quark and gluon degrees of freedom

play an important role in the inter-nucleon interaction. Due to the nonperturbative

nature of strong interaction at this range, it is not yet possible to describe the NN

interaction as solutions to the QCD Lagrangian.

Many realistic NN interaction models have been constructed by fitting NN scat-

tering data. Some of the well-known NN potentials are: Paris [4], Reid [5, 6], Argonne

v18 [7], Nijmegen [6], and CD Bonn [8]. The modern NN potentials try to include
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all possible operator structures permitted by symmetry, continuity and differentiabil-

ity considerations, and are fit to low-energy NN scattering data. In this light, these

potential models are analogous to the effective field theory (EFT) approach where

one starts by defining the most general Lagrangian consistent with the symmetries

of the underlying theory [9]. Since the potentials are fit to np or pp scattering data,

the deuteron, as the only stable two-nucleon bound state, plays a special role in the

understanding of the NN interaction.

Since the electromagnetic probe is well understood in terms of Quantum Electro-

dynamics (QED), and the electromagnetic interaction is much weaker than the NN

interaction between nucleons, electron scattering experiments provide an excellent

tool to study nuclear structure [10]. Experimental study of electron-deuteron scat-

tering started in the 60s, and extensive data were collected on the cross section of

unpolarized ed-elastic scattering (Sec. 2.1.2) [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,

22, 23, 24, 25, 26, 27, 28]. These cross section data, combined with the Rosenbluth

separation [29] technique, provide two structure functions of the deuteron, A(Q) and

B(Q). However, the elastic scattering of electrons off a spin-1 particle, such as the

deuteron, is described by three form factors, the charge monopole, magnetic dipole

and charge quadrupole form factors. At least one additional measurement is required

to completely separate the form factors. It was only in the last two decades that

innovative accelerator and target technologies provided new experimental techniques

to measure polarized observables.

Among the polarized observables, T20 is the most extensively measured one [30,

31, 32, 33, 34, 35, 36, 37, 38, 39] (Sec. 2.1.3), thanks to its large size and the fact that

it can be measured with unpolarized electron beams. The first measurement of T20

was carried out at MIT Bates laboratory in 1984. Two decades after, unfortunately,

the data on T20 are stillunsatisfactory. Only 26 data points are available (41 with

T21 data included) compared to the few hundred cross section data points, statistical

precisions are poor, and inconsistencies between data sets exist.

Calculations based on nonrelativistic impulse approximation (NRIA) and phe-

nomenological NN potentials are able to fit A(Q) and B(Q) data reasonably well up to
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a momentum transfer of about 2 fm−1 [40] (Sec. 2.2). However the deviation between

these calculations and data at higher momentum transfers is significant, demonstrat-

ing the important contributions from two-pion exchanges, meson exchange currents,

and relativistic corrections. Discrepancy between NRIA and T20 data is significant

too at Q & 4 fm−1, while at lower Q the poor precision and accuracy in existing data

could not establish the contribution from those corrections unambiguously.

The limitations of NRIA motivated more sophisticated theoretical models which

include meson exchange currents and other relativistic effects. These models can be

divided into a few categories:

• Addition of MEC and relativistic corrections to a nonrelativistic impulse ap-

proximation [41, 42, 43, 44, 45, 46];

• Quasipotential equations with relativistic impulse approximation [47, 48, 49].

• Chiral Perturbation Theory (χPT ) [50].

These approaches are nicely reviewed in Ref. [51]. All models are able to explain

part of data reasonably. However, none of them is able to be consistent with all the

deuteron form factor and static moment data, and there is no concensus on which

is the best approach. The lack of precision polarized measurements and the poor

consistency within the data make it hard to test the various theories.

This thesis reports a measurement of the tensor analyzing powers T20 and T21

carried out at the MIT Bates Linear Accelerator Laboratory with the Bates Large

Acceptance Spectrometer Toroid (Chap. 3). The experiment utilized a few innovative

accelerator, target and detector technologies offering unique advantage in the study

of deuteron structure:

• An electron storage ring capable of storing over 200 mA of highly polarized

electron beam (Sec. 3.1).

• An Atomic Beam Source and an internal target providing a pure deuterium

target with strong vector and tensor polarizations; and a target holding mech-

anism capable of directing the quantization axis of the target spin to arbitrary

direction in the horizontal plane (Sec. 3.2). Coupled with the polarized electron
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beam, it allowed the experimental study of electron-deuteron spin asymmetries

across many different beam-target spin states. The low target density compared

to liquid targets used in extracted beam experiments are compensated by the

high beam current.

• A large acceptance magnetic spectrometer with left-right symmetric geometry

(Sec. 3.3), allowing data collection across a large acceptance over many reaction

channels simultaneously.

The experiment was carried out between June 2002 to May 2005, and many reaction

channels from a deuterium target were studied, including, besides the tensor asym-

metries in
←→
D (e, e′d) detailed in this work, vector analyzing powers in ~D(~e, e′d) [52],

vector and tensor asymmetries in
←→
~D (~e, e′p) [53], Gn

E measurement via ~D(~e, e′n) [54],

Gn
M measurement via inclusive quasi-elastic ~D(~e, e′) scattering [55].
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Chapter 2

Theoretical Motivation

This chapter discusses the formalism of elastic electron deuteron (ed-elastic) scatter-

ing. In Sec. 2.1, the kinematics are defined, and observables are presented for both

unpolarized and polarized scattering. A detailed discussion is devoted to the Non-

relativistic Impulse Approximation (NRIA) in Sec. 2.2. The purpose is to illustrate

some of the main properties of the deuteron and to motivate the more sophisticated

theoretical models that include meson exchange currents (MEC) and additional rel-

ativistic effects. A brief review of these models is given with an emphasize on the

contribution of MEC to both unpolarized and polarized observables. The chapter

concludes with an brief review of the world data for ed-elastic scattering and the

comparison with the theoretical models (Sec. 2.3).

2.1 Elastic Electron-Deuteron Scattering

2.1.1 Kinematics

Under the one-photon exchange (OPE) approximation [10], the incident electron ex-

changes one virtual photon with the target particle. The kinematics with a polarized

target are illustrated in Fig. 2-1. The incident electron with energy E0 is scattered

in the direction Ωe = (θe, φe) with energy E ′. The 4-momentum transfer from the

electron to the target deuteron is q ≡ k1−k2 = (ω,q). Let Md be the deuteron mass;
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then

E ′ = E0/f, and Q2 ≡ −q2 = 4E0E
′ sin2

θe
2

(2.1)

where f = 1 +
2E0

Md

sin2
θe
2

is usually called the recoil factor.

PSfrag replacements

x ∗

x∗
y∗

z ∗

z∗

θe

θ
e

φe

φ
e

θ∗

φ∗

k1
k1

k2

k2

p1

p1

p2

p2

h = ±1

η
η

q

q

Figure 2-1: Kinematics for the polarized elastic scattering OPE amplitude in the
scattering plane (left), and in three dimensions (right). The polar angles (θ∗, φ∗) and
components (x∗, y∗, z∗) of the target polarization vector η are also shown.

2.1.2 Unpolarized Cross Section

Assuming parity and time-reversal invariance, elastic electron-deuteron (ed-elastic)

scattering under OPE is completely described by three form factors: the charge

monopole GC , the quadrupole GQ and the magnetic dipole GM . The unpolarized

elastic electron-deuteron cross section can be written as [10, 56, 51, 40, 57]:

dσ0
dΩ

=
σMott

f
S, with σMott =

α2 cos2(θe/2)

4E2
0 sin

4(θe/2)
, (2.2)

the Mott cross section which describes the scattering off a point target, and

S = A(Q2) +B(Q2) tan2
θe
2
, (2.3)
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originates from the electromagnetic structure of the deuteron. The structure functions

A and B are given by the electromagnetic form factors

A(Q2) = G2
C(Q

2) +
8

9
η2G2

Q(Q
2) +

2

3
ηG2

M(Q2), (2.4)

B(Q2) =
4

3
η(1 + η)G2

M(Q2), (2.5)

where η =
Q2

4M2
d

.

A(Q2) and B(Q2) can be determined through Rosenbluth separation [29] of the

unpolarized ed-elastic cross section. Since there are three form factors and the Rosen-

bluth separation only gives two observables, additional measurements are needed to

completely separate the form factors. These measurements can be made using elec-

tron scattering from a polarized target.

2.1.3 Polarized Observables

As a spin-1 particle, the deuteron can have vector and tensor polarizations. Let

M denote the projection of deuteron spin along its quantization axis. The vector

polarization is given by Pz = n+ − n− where n± is the relative population of the

deuteron in the M = ±1 states. The tensor polarization is defined as Pzz = n+ +

n− − 2n0 = 1 − 3n0 where n0 is the relative population of the M = 0 state. Pz

can be between −1 and 1, Pzz can be between −2 and 1, and the vector and tensor

polarization are related by the constraint n+ + n− + n0 = 1. For example, vector

polarization Pz must be 0 when Pzz = −2.

The cross section of elastic electron scattering off a polarized deuterium target

can be written as [10, 40, 51, 56, 57]:

dσ

dΩ
(h, Pz, Pzz) =

dσ0
dΩ

(1 + PzzΓ + hPz∆) , (2.6)

25



where
dσ0
dΩ

is the unpolarized cross section, and

Γ =
1√
2

[

(

3

2
cos2 θ∗ − 1

2

)

T20 −
√

3

2
sin 2θ∗ cosφ∗T21 +

√

3

2
sin2 θ∗ cos 2φ∗T22

]

,

(2.7)

∆ =
√
3

[

1√
2
cos θ∗T e

10 − sin θ∗ cosφ∗T e
11

]

, (2.8)

where (θ∗, φ∗) is the direction of the target spin orientation defined in the LAB frame

with respect to the momentum transfer, as shown in Fig. 2-1. The analyzing powers

Tij can in turn be expressed in terms of the three form factors 1,

T20(Q
2, θe) = − 1√

2S

[

8

3
ηGCGQ +

8

9
η2G2

Q +
1

3
η

[

1 + 2(1 + η) tan2
θe
2

]

G2
M

]

,

(2.9)

T21(Q
2, θe) = − 2√

3S
η

√

η + η2 sin2
θe
2
GMGQ, (2.10)

T22(Q
2, θe) = − 1

2
√
3S

ηG2
M , (2.11)

T e
10(Q

2, θe) = − 1

S
η

√

2

3
(1 + η)

(

1 + η sin2
θe
2

)

G2
M sec

θe
2
tan

θe
2
, (2.12)

T e
11(Q

2, θe) =
2√
3S

√

η (1 + η)GM

(

GC +
1

3
ηGQ

)

tan
θe
2
. (2.13)

The superscript e in T e
10 and T e

11 indicates that a polarized electron beam is needed

to measure them.

This work is devoted to the experimental determination of the tensor analyzing

powers T20 and T21. The 3
rd tensor analyzing power T22 is proportional to G

2
M , which

is redundant with B(Q2) and is very small in size. The vector analyzing powers, T e
10

and T e
11, are the subject of the dissertation of Dr. P. J. Karpius [52] whose data were

taken simultaneously with this work.

T20 can be expressed in terms of the ratio between the electric monpole and

quadrupole form factors. Let Y =
2η

3

GQ

GC

and X =

√

η
[

1 + 2(1 + η) tan2 θe

2

]

3

GM

GC

;

1Following the convention in Ref. [10].
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then

T20 = −
√
2
Y (2 + Y ) + 1

2
X2

1 + 2Y 2 + 2X2
. (2.14)

X is typically very small in size compared to Y . It is customary to introduce T̃20

where the X contributions are eliminated:

T̃20(Q
2) =

T20(Q
2, θe) +

δ
2
√
2

1− δ = −
√
2
Y (2 + Y )

1 + 2Y 2
, with δ =

2X2

1 + 2Y 2 + 2X2
. (2.15)

T̃20 reaches its minimum of −
√
2 when Y = 1, and at the node of the charge form

factor where GC = 0, T̃20 = −1/
√
2. Therefore T20 sheds light on the location of the

node of GC(Q
2) which is intimately related to the repulsive core in the NN potential

(Sec. 2.2.1).

2.2 Nonrelativistic Impulse Approximation

In this section, we discuss the simplest picture of the deuteron structure, namely

the nonrelativistic impulse approximation (NRIA). Under this approximation, the

deuteron is viewed as a nonrelativistic two-body system bounded by the NN poten-

tial. The deuteron is then described with wave functions obtained by solving the

Schrödinger equation with the NN potential.

2.2.1 Nonrelativistic Deuteron Wave Function

The tensor component of the NN interaction dictates that the deuteron wave function

be a mixture of 3S1 and 3D1 states [44]:

ΨM
d (r) =

u(r)

r
YM101(θ, φ) +

w(r)

r
YM121(θ, φ), (2.16)

where u(r) and w(r) are the reduced radial wave functions for S- and D-state respec-

tively.

YMJLS(Ωr) =
∑

mL,mS

〈J,M |L,mL;S,mS〉 YLM |S,mS〉
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are the spin-spherical harmonics for a state with respective total, orbital and intrin-

sic angular momenta J , L, S, and M denotes the projection of the total angular

momentum along its polarization axis. Fig. 2-2 shows the reduced S- and D- radial

wave functions with the Argonne v18 potential [7]. Both u(r) and w(r) drop steeply

at small r as a consequence of the repulsive core of the NN potential.

Figure 2-2: The S- and D-state radial wave functions, u(r) (solid line) and w(r)
(dashed line) , for the Argonne v18 potential. Both reduced radial wave function drop
steeply at small r due to the repulsive core.

Since the nuclear force has short range, for r outside of roughly 1 fm, the wave

functions decrease exponentially just like the free-wave solutions of corresponding

angular momentum. The rate of the decrease is determined by the binding energy

EB of the deuteron:

u(r)→ ASe
−γr and w(r)→ ADe

−γr
{

1 +
3

γr
+

3

γ2r2

}

as r →∞, (2.17)

with γ =
√

1
2
EB(Mn +Mp) = 0.23161 fm−1. The asymptotic D/S ratio ηd =

AD

AS

is

measured to be 0.0256 [58].
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In this simple picture, the S- and D- state probabilities are

PS =

∫ ∞

0

u2(r)dr and PD =

∫ ∞

0

w2(r)dr. (2.18)

In general the D-wave admixture predicted by various NN potential is about 4-8%.

The static properties of the deuteron can be computed from the wave function. The

magnetic moment is entirely determined, in the non-relativistic wave function ap-

proximation, by the D-state probability,

µd = µp + µn −
3

2

(

µp + µn −
1

2

)

PD, (2.19)

where µp = 2.79285 µN and µn = −1.91304 µN are the proton and neutron magnetic

moments respectively. The deuteron magnetic moment is experimentally found to be

µd = 0.85744 µN = 1.714
Mp

Md

µN
2, which is close to µp + µn. However, µd can not

be used to determine the D-wave probability due to the presence of meson exchange

currents (MEC), isobar components and relativistic effects in addition to the simple

model presented here.

The electric quadrupole moment arises purely due to the D-wave admixture,

Qd =
1

50

∫ ∞

0

w(r)

[

u(r)− 1√
8
w(r)

]

r2dr. (2.20)

The quadrupole moment is dominated by the interference between the S- and D-state

wave functions, and the integrand is weighted by r2, which means that the static

quadrupole moment is dominated by the long-range asymptotic behavior of the wave

functions. Therefore, the quadrupole function and the asymptotic D/S ratio contain

similar information. The deuteron electric quadrupole moment is measured to be

0.2859 fm2 = 25.83 M−2
d .

2Mp and Md are the is the proton and deuteron mass respectively.
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From Eqs. 2.16, the wave function for each M state can be obtained:

Ψ0
d(r) =

√

4

π

[

u(r)

r
−
√
2
w(r)

r

(

3

2
cos2 θ − 1

2

)]

|1, 0〉

+

√

9

π

w(r)

r
sin θ cos θ

[

e−iφ |1,+〉 − eiφ |1,−〉
]

, (2.21)

Ψ±1
d (r) =

√

4

π

[

r(r)

r
+

√

1

2

w(r)

r

(

3

2
cos2 θ − 1

2

)

]

|1,±〉

±
√

9

π

w(r)

r
e±iφ sin θ cos θ |1, 0〉+

√

9

2π

w(r)

r
e±2iφ sin2 θ |1,±〉 .(2.22)

The probability density is, ρMd (r) ≡ ΨM∗
d (r)ΨM

d (r), or explicitly























ρ0d(r) =
4

π
[C0(r)− 2C2(r)P2(cos θ)]

ρ±1d (r) =
4

π
[C0(r) + C2(r)P2(cos θ)]

, (2.23)

where


























C0(r) ≡
(

u(r)

r

)2

+

(

w(r)

r

)2

C2(r) ≡
w(r)

r

(√
2
u(r)

r
− 1

2

w(r)

r

)

, (2.24)

and P2(cos θ) ≡
3

2
cos2 θ − 1

2
is the Legendre polynomial of order 2. Fig. 2-3 shows

the deuteron densities in the M = 0 and M = ±1 states.

2.2.2 Wave Function in Momentum Space

It is convenient to discuss the dynamic properties of deuteron in the momentum space.

Taking Fourier transformations of the wave functions in position space yields

Ψ̃M
d (p) ≡ 1

(2π)3/2

∫

e−ip·rΨM
d (r). (2.25)
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zz

Figure 2-3: Deuteron densities in M = 0 (left) and M = 1 (right). Red represents
the maximal nucleonic density, while dark volumes correspond to lower densities [51].

The corresponding momentum-space density functions, ρ̃Md (p) ≡ Ψ̃M∗
d (p)Ψ̃M

d (p), take

on a form similar to that of the position-space densities (Eq.2.23):























ρ̃0d(p) =
1

4π

[

C̃0(p)− 2C̃2(p)P2(cos θp)
]

ρ̃±1d (p) =
1

4π

[

C̃0(p) + C̃2(p)P2(cos θp)
]

. (2.26)

The C̃`(p) terms are defined in a similar manner as the C`(r), (Eqs. 2.24):























C̃0(p) ≡ R̃0(p)
2 + R̃2(p)

2

C̃2(p) ≡ R̃2(p)

(√
2R̃0(p)−

1

2
R̃2(p)

)

. (2.27)

In these equations, R̃`(p) is the Fourier-transformed radial wave function:

R̃`(p) ≡ i`
√

2

π

∫ ∞

0

rj`(pr)u`(r) (2.28)

where j`(x) is the spherical Bessel function of order L.
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Momentum space wave functions,
∣

∣

∣R̃`(p)
∣

∣

∣, are shown in Fig. 2-4. There are a

couple distinct features: 1) R̃0(p) displays a node at p & 0.4 GeV (2 fm−1); 2) The

dominance of D-wave components at high momenta. The node arises from the sharp

drop of u(r) at small distance, which is a consequence of the repulsive core of the NN

potential. ρ̃Md (p) is observable in the electro-disintegration of deuteron [53].

p (GeV)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

)
3/

2
| (

fm
L

R~ |
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0.5

|0R~|

|2R~|

Figure 2-4: The magnitudes of the Fourier-transformed S- and D-state radial wave

functions,
∣

∣

∣R̃0(p)
∣

∣

∣ and
∣

∣

∣R̃2(p)
∣

∣

∣. Note the node of R̃0(p) at p & 0.4 GeV which is a

consequence of the repulsive core of the NN potential.

2.2.3 Nonrelativistic Impulse Approximation

The nonrelativistic impulse approximation (NRIA) is based on the nonrelativistic

deuteron wave function. In addition to the wave function, the impulse approximation

assumes that the electron interacts with only one of the constituent nucleons while

the other acts as a spectator. Therefore in NRIA, the deuteron electromagnetic form

factors can be written as the product of nucleon form factors and the body form
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factor which depends on the deuteron wave function [59],

GC(Q
2) = (Gp

E +Gn
E)

∫

[

u2(r) + w2(r)
]

j0

(

Qr

2

)

dr (2.29)

GQ(Q
2) =

3

η
√
2
(Gp

E +Gn
E)

∫

w(r)

[

u(r)− w(r)√
8

]

j2

(

Qr

2

)

dr (2.30)

GM(Q2) = 2(Gp
M +Gn

M)

∫ {[

u2(r)− w2(r)

2

]

j0

(

Qr

2

)

+

[

u(r)w(r)√
2

+
w2(r)

2

]

j2

(

Qr

2

)}

dr

+
3

2
(Gp

E +Gn
E)

∫

w2(r)

[

j0

(

Qr

2

)

+ j2

(

Qr

2

)]

dr (2.31)

where j`(Qr/2) are spherical Bessel functions. Since bothGC andGQ are proportional

to Gp
E +Gn

E in the NRIA, one immediate observation is that GQ/GC and thus T̃20 is

independent of nucleon form factors in this approximation [51].

The observables A(Q), B(Q) and T20 can be calculated from the various NN po-

tentials in NRIA and the results are shown in Fig. 2-5 and 2-6. It is apparent that the

NRIA approach agrees with the data only up to 2-3 fm−1, and the deviation in A(Q)

between the data and the NRIA calculation is significant. All the NRIA approxima-

tions predict an A(Q) that is 40-60% lower than the data at Q ∼ 6 fm−1. NRIA also

underpredicts B(Q); as a result, the first node of B(Q) predicted by NRIA is lower

in Q than indicated by data. The NRIA calculations using different NN potentials

have similar behaviors, indicating the inherent limitation of the approximation itself.

Comparison with T20 shows that NRIA clearly cannot explain the data at high mo-

mentum transfer (Q & 4 fm−1). In addition, at lower Q, the NRIA is only consistent

with the Bates-84 data, while the NIKHEF T20 data are consistently lower (more

negative) than any NRIA calculations by about one standard deviation.
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Figure 2-5: T20 in NRIA with different NN potentials. The potentials shown are
the same as Fig. 2-6. World data and the three parameterizations are shown too
(Sec. 2.3). The NRIA calculation deviate from the data at high momentum transfer.
At lower Q, NRIA are consistent with Bates-84 data while the NIKHEF data are
consistently lower by about 1-σ.

2.2.4 Relativistic Corrections

The limitation of NRIA motivated more sophisticated theoretical models. At above

2 fm−1, the momentum transfer starts to become comparable to the nucleon mass,

therefore relativistic effects must be taken into consideration. Theoretical models have

been developed to include the meson exchange current (MEC), isobar components

and other relativistic corrections to the nonrelativistic potential models [41, 42, 43,

44, 45]. Efforts are also devoted to construct intrinsically covariant theories, for

example, the relativistic impulse approximation (RIA) with the addition of MEC

contributions [47, 48, 49]. Recently, the development in Chiral perturbation theory

provided new theoretical tools to understand the deuteron structure [50]. Ref. [40,

34



)-1Q (fm

0 1 2 3 4 5 6 7 8

A
(Q

)

10
-5

10
-4

10
-3

10
-2

10
-1

1
World Data

Buchanan (1965)
Benaksas (1966)
Elias, CEA (1969)
Galster, DESY (1971)
Arnold, SLAC (1975)
Akimov, (1979)
Simon et al., MAINZ (1981)
Cramer et al., Bonn (1985)
Platchkov et al., Saclay (1990)
JLab Hall C (1999)
JLab Hall A (1999)

Theory
Reid IA (1968)

Paris IA (1980)

Argonne v18
Bonn-CD

Abbott I

Abbott II

Abbott III

)-1Q (fm

0 1 2 3 4 5 6 7 8

B
(Q

)

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

World Data
Buchanan (1965)
Benaksas Orsay (1966)
Rand (1967)
Ganichot Orsay (1972)
Simon et al., MAINZ (1981)
Auffret Saclay (1985)
Cramer et al., Bonn (1985)
Bosted et al., SLAC (1990)

Theory

Reid IA (1968)

Paris IA (1980)

Argonne v18
Bonn-CD

Abbott I

Abbott II

Abbott III

)-1Q (fm
0 1 2 3 4 5 6 7 8

fi
t

d
A

/A

-0.6

-0.4

-0.2

0

0.2

0.4

)-1Q (fm
0 1 2 3 4 5 6 7 8

fi
t

d
B

/B

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

Figure 2-6: A(Q) and B(Q) in NRIA with different NN potentials (Reid [5], Paris [4],
Argonne v18 [7], CD-Bonn [8] and Nijmegen [6]). World data and the three param-
eterizations are shown too (Sec. 2.3). The lower panels show the relative deviation
from Parameterization III (A(Q)−A0(Q))/A0(Q), where A0(Q) is the predicted value
by Parameterization III (Sec. 2.3.3). It is apparent that the NRIA approach agrees
with the data only up to 2-3 fm−1, and NRIA predictions are significantly lower than
data at higher Q.

35



51, 56, 57] provide very detailed review on different approaches, models and their

comparison with data. We illustrate below the MEC contribution.

The long-range part of the NN interaction is well understood in terms of one-pion

exchange. At medium and short range, two-pion exchange, as well as the exchange of

heavier mesons such as ρ and ω, become important. MEC give rise to currents in the

nuclear medium and the simple two body wave function description is no long valid.

The virtual photon emitted by the electron can also couple to the exchanged meson

itself. The diagrams for MEC effects are shown in Fig. 2-7. Since the deuteron has

isospin zero, isovector contributions are forbidden in the ed-elastic scattering.

ε

γ

π,ρ,ω

b)

π,ρ,ω

ρ

γ

γ γ

ωπ

a)

π,ρ,ω

c)

d) e)

γ

Figure 2-7: Meson-exchange current diagrams: a), b) pair terms, c) retardation, d)
ρπγ term, e) ωεγ term

The effect of relativistic effects are shown in Figs. 2-8 and 2-9. It is seen that

for T20, MEC corrections play an important role in brings the NRIA into agreement

with data at high momentum transfer. At low Q, the πργ contribution is small,

yet the MEC effect is still significant. Pure NRIA lies above the Bates-84 data at

Q ≤ 2 fm−1, while the addition of MEC increases the size (absolute value) of T20 such

that the NRIA+MEC lies closer to the NIKHEF data. The inclusion of MEC into
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NRIA is significant in A(Q) and B(Q) too, especially beyond Q = 4 fm−1. It brings

the NRIA model into better agreement to the A(Q) data. On the other hand, the

RIA includes some of the MEC contribution and the addition of the πργ diagram has

relatively smaller effect, especially on A(Q). The momentum transfer predicted by

NRIA where GM reaches its first node is higher than experimental value, while the

node position derived from RIA is lower than experimental value. The agreements

with experimental data, in the position of the node, by both NRIA and RIA are

improved after the inclusion of the MEC and the πργ respectively.

It is interesting to observe that the contributions of MEC to the NRIA and πργ to

the RIA have a different sign. In fact it is generally true that the contributions from

individual MEC diagrams are comparable in size and have different signs, therefore,

all MEC diagrams must be included consistently.
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Figure 2-8: Relativistic corrections to impulse approximations in T20. Two calcu-
lations, Schiavilla [45, 46] and Tjon [47]. The former is a nonrelativistic (NRIA)
approach with MEC corrections, while that later is a relativistic approach (RIA)
with the πργ correction.
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Figure 2-9: Relativistic corrections to impulse approximations in A(Q) and B(Q).
Two calculations, Schiavilla [45] and Tjon [47]. The former is an NRIA with MEC
corrections, while that later is an IRA with the πργ correction. From the left panels,
NRIA prediction is significantly lower than the data at Q > 4 fm−1. The addition of
MEC (red solid) to NRIA (red dash) brings the model to better agreement with the
data. On the right, The inclusion of MEC brings the model predicted node closer to
the experimental value around 7 fm−1. The lower panels show the relative deviation
from Parameterization III, see the caption of Fig. 2-6.
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2.3 The World Data

2.3.1 Cross Section Data

Extensive effort has been devoted to the measurement of the elastic electron-deuteron

cross section [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. Some

of these experiments measured the back scattering cross section [15, 16, 19, 25] to

extract B(Q). Some measured the cross section at forward angles [17, 18, 20, 21] for

A(Q). The rest made measurements at different Q2 and θe and performed Rosenbluth

separations on A(Q) and B(Q). World data for A and B are shown in Fig. 2-10.

It is worth noticing that at Q ≈ 2 fm−1, the A(Q) measured by Simon et al. at

Mainz [22], and by Platchkov et al. at Saclay [26] differ by about 10%, which is greater

than 5-σ [60]. Mainz data at this momentum transfer lie consistently above the Saclay

data, which are consistent with the earlier Benaksas measurements [15] except at the

lowest Q2 covered by Benaksas. This discrepancy has a profound implication on the

work here and will be discussed in Sec. 4.6.1.

2.3.2 Polarized Data

The most extensively measured tensor analyzing power is T20 [30, 31, 32, 33, 34, 35, 36,

37, 38, 39] because of its large size and the fact it can be measured with an unpolarized

electron beam. The previous world data are shown in Fig. 2-11. The knowledge of

the target polarization is of great importance in these measurements. Most of these

experiments used one of the three types of techniques in terms of the polarization

determination: 1) unpolarized target with recoil-polarimetry measurements [30, 35,

38]; 2) polarized target with absolute target polarimetry [31, 32, 36, 37] 3; 3) polarized

target with target polarization measured by normalizing the data to models at low

momentum transfer [33, 39]. The calibration of the target or recoil polarimeter is one

major source of systematic error in the first two approach, while the 3rd technique

3The VEPP-2(85/86) [31, 32] experiments did not have an internal target storage cell. The
target was a polarized atomic jet. The polarization of the target gas jet was measured by standalone
polarimeters, as documented in the publications.

39



)-1Q (fm

0 1 2 3 4 5 6 7 8 9 10

A
(Q

)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1
World Data

Buchanan (1965)

Benaksas (1966)

Elias, CEA (1969)

Galster, DESY (1971)

Arnold, SLAC (1975)

Akimov, (1979)

Simon et al., MAINZ (1981)

Cramer et al., Bonn (1985)

Platchkov et al., Saclay (1990)

JLab Hall C (1999)

JLab Hall A (1999)

Theory
Arenhovel
Schiavilla MEC
van Orden

Phillips,Wallace,Devine
PT NNLOχPhillips 

Abbott I
Abbott II
Abbott III

)-1Q (fm

0 1 2 3 4 5 6 7 8 9

B
(Q

)

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2 World Data

Buchanan (1965)

Benaksas Orsay (1966)

Rand (1967)

Ganichot Orsay (1972)

Simon et al., MAINZ (1981)

Auffret Saclay (1985)

Cramer et al., Bonn (1985)

Bosted et al., SLAC (1990)

Theory
Arenhovel

Schiavilla MEC

van Orden

Phillips,Wallace,Devine

PT NNLOχPhillips 

Abbott I

Abbott II

Abbott III

)-1Q (fm
0 1 2 3 4 5 6 7 8 9 10

fi
t

d
A

/A

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

)-1Q (fm
0 1 2 3 4 5 6 7 8 9

fi
t

d
B

/B

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 2-10: World data for A(Q) and B(Q) and comparison to theoretical mod-
els. The large discrepancy between Simon (MAINZ 1981, blue circle) and Platchkov
(Saclay 1990, black diamond) at 2 fm−1 can be seen in the lower left panel. The
lower panels show the relative deviation from Parameterization III, see the caption
of Fig. 2-6
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suffers from the drawback that the polarization measurement is not independent of

the observables to be measured; therefore the results depend on the particular model

used for the normalization.

The existing data on T20 are hardly satisfactory. The statistical precisions are

poor, and insufficient to distinguish between the state-of-art deuteron structure mod-

els. The Q2 coverage is fragmented, leading to difficulties in determining the shape

of the T20 curve.

At 2 fm−1, the Bates-1984 data and the NIKHEF-1999 data are only marginally

consistent with each other. The difference is 1-σ or ∼ 15%. In addition, all NIKHEF

measurements are consistently lower (more negative) than the Bates-1984 data in

their overlap region. Again, this difference has profound implications for the work

presented in this thesis and will be discussed again in Sec. 4.6.1. At higher momentum

transfer, the agreement between Bates-1994 and JLab-2000 data are not satisfactory

either. At about 4.1 fm−1, the Bates-1994 data point is about 1-σ lower (more

negative) than the JLab-2000, and this trend is repeated in the data at higher Q of

4.5 fm−1.

T21 was measured as a by-product in some of the recent experiments [35, 38, 39].

The results are shown in Fig. 2-11. However, all these measurements were at relatively

high Q2 and suffer from significant statistical and systematic uncertainty.

2.3.3 Parameterization of World Data

The JLab t20 collaboration performed parameterizations of the world data [61] using

three phenomenological models of the form factors. The three models are,

Parameterization I:

GX(Q
2) = GX(0) ·

[

1−
(

Q

Q0
X

)2
]

·
[

1 +
5
∑

i=1

aXi
Q2i

]−1

(2.32)

where X = C, Q, or M and Q0
X is the location of the first node of each form factor.

Q0
X and aXi

are fit to data and this parameterization produces explicitly the location
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Figure 2-11: World data for T20 and T21. All except for the VEPP-3 data are with
absolute normalization in the sense that either the target or the recoil deuteron tensor
polarization were measured.
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of the first nodes of the form factors.

Parameterization II:











GC

GQ

GM











= G2
D

(

Q2

4

)

· M(η)











g0

g1

g2











(2.33)

where G2
D is the square of a dipole nucleon form factor and gk are reduced helicity

transition amplitudes defined in terms of four Lorentzian factors which themselves

depend on two parameters, gk = Qk

4
∑

i=1

aki
α2ki +Q2

.

Parameterization III:

GX(Q
2) = GX(0) · e−

1
4
Q2γ2

25
∑

i=1

Ai

1 + 2R2
i /γ

2
·
(

cos(QRi) +
2R2

i

γ2 sin(QRi)
QRi

)

(2.34)

This parameterization is called a Sum-of-Gaussian (SOG), where the form factors are

decomposed into sum of Gaussian wavelets. Ai, Ri and γ are the amplitudes, center

and widths of the Gaussian respectively, and are obtained by fitting to world data.

All three parameterizations are fit to world cross section and polarized data. The

reduced χ2 are 1.5 for parameterization I and II, and 1.8 for parameterization III. It

must be pointed out that Simon et al. (Mainz) cross section data at about Q ∼ 2 fm−1

could not be fit consistently with the rest of the world data, therefore, were excluded

from the fit 4.

2.3.4 Comparison Between Data and Theory

Figs. 2-10 and 2-11 include some of the “state-of-art” models. The addition of MEC to

NRIA improves the agreement with A(Q) and B(Q) data. The models by Schiavilla et

al. [45, 46] and Van Orden et al. [49] seem to fit the data reasonably, while Arenhövel

et al. [43] seem to overshoot both A and especially B. The Chiral perturbation

4These data points remains over 5-σ outliers when Parameterization I was refit with the entire
Platchkov data set excluded. This shows that these data points are not even consistent with the
cross section data taken in the other experiments at neighboring Q2.

43



theory [50], though promising for the very first time to understand the detueron

structure from first principles, still has a long way to go. In particular, the fit between

the B(Q) calculation by the χPT theory and the data is still much worse than the

rest of the models.

On the other hand, the comparison between theory and T20 data remains incon-

clusive. Although at momentum transfer of ∼ 2 fm−1, Bates-84 data are in good

agreement with NRIA calculation (Sec. 2.2.3), NIKHEF-96 and -99 data lie consis-

tently lower (more negative) by about 1-σ and seem to indicate the presence of MEC

effects. At higher Q, the inclusion of relativistic effects improves the agreement be-

tween T20 data and models; however the Bates-94 data are consistently lower (more

negative) than JLab-2000 by about 1-σ in their overlapping region. This slight dis-

crepancy and the large statistical uncertainties presented in both data sets do not

differentiate among the various state-of-art models. It is also interesting that the

prediction by Arenhövel [43] is in very good agreement with the data up to about

4.5 fm−1, while those models that better fit A and B do not fit as well.

The striking fact is that none of the GQ(Q) predicted by the theoretical models

reproduces the static quadrupole moment Qd of the deuteron when extrapolated to

Q = 0. Precise measurement of T20 at low Q combined with high-quality low-Q cross

section data could provide additional constraints on the asymptotic behavior of GQ

when Q→ 0. This discrepancy is very vividly captured by graphing a quantity T̃20R

proposed by Garçon and Van Orden [51]:

T̃20R(Q
2) = − 3√

2QdQ2
T̃20(Q

2), (2.35)

where Qd is the static deuteron quadrupole moment and T̃20(Q
2) is defined in Eq. 2.15.

At Q2 = 0, one has,

T̃20R(0) =
GQ(0)

QdM2
d

. (2.36)

Since experimentally GQ(0) = Qd with Qd expressed in units of 1/M 2
d , the experi-

mental value of T̃20R(0) is 1. T̃20R calculated by a few models are shown in Fig. 2-12

along with the world data. T̃20R helps highlighting features at low Q2 which are not
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as obvious in figures of T20 itself. It is obvious that the GQ(0) < Qd for most models.

The figure also highlights the difference between various models and the discrepancy

between theory and data at low Q.
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Figure 2-12: T̃20R world data and model predictions. Since experimentally GQ(0) =
Qd with Qd expressed in units of 1/M 2

d , the experimental value of T̃20R(0) is 1. It is
shown in this figure that when GQ(Q

2) calculated by the various models is extrapo-
lated to Q2 = 0, none of them reproduces the static deuteron quadrupole moment.

It was therefore proposed to measure T20 with BLAST for momentum transfers in

the range 2 < Q < 4.5 fm−1 [62]. The measurements provide additional constraints

on T20 in this Q range, crosscheck the systematic errors in data previously taken at

different facilities at different times, and provide unique information on the evolution

of T20 with Q over a large range. The measurements were carried out during the

period from July 2004 to May 2005 at the MIT Bates Linear Accelerator Center.

The experimental setup, data analysis and results are presented in this work.
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Chapter 3

Experimental Setup

The experiment described in this thesis was performed at the Bates Linear Accelerator

Center in Middleton, MA. The three key components of the apparatus: the South

Hall Ring (SHR), the Atomic Beam Source (ABS) and the Bates Large Acceptance

Spectrometer Toroid (BLAST) detector complex, are described in this chapter.

3.1 Stored Polarized Electron Beam

A longitudinally polarized electron beam with an energy of 850 MeV was injected and

stored in the Bates South Hall Ring. Over 1 Million Coulomb of integrated charge

was delivered to BLAST for production data taking.

3.1.1 Polarized Source

Longitudinally polarized electrons were produced by photoemission from a strained

GaAs crystal photo-cathode illuminated with a circularly-polarized laser [63]. A

Cesium coating was applied to reduce the work function of the crystal. The coating

had to be restored about once a week. The actual polarization of the emitted electrons

was between 75% to 80%. The beam polarization at the source was periodically

measured with a transmission polarimeter [64].

The laser beam was generated by a commercially available 150 Watts fiber-coupled
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diode array laser system with fixed wavelength of 808 nm. A λ/2 wave-plate was

mechanically moved in or out of the path of the laser beam, reversing the polarization

of the laser and in turn the beam helicity which was monitored in real time by a

Compton polarimeter (Sec. 3.1.3).

After an initial 360 keV acceleration from the crystal, the electrons entered into

the linear accelerator (LINAC). The LINAC consists of 190 meters of RF cavities

capable of energies up to 540 MeV. A recirculator transported the beam back to the

beginning of the LINAC for a second pass through the RF cavities to nearly double

the energy.

3.1.2 South Hall Storage Ring

The electron beam from the LINAC was injected into the South Hall Ring (SHR). The

SHR may be operated either as a storage ring for internal targets or in pulse stretcher

mode to produce nearly continuous beam for external target experiments. Beam

pulses of a few mA were stacked at an injection rate of 2-20 Hz to achieve currents

in excess of 200 mA. Fig. 3-1 shows a floor plan of the MIT-Bates Linear Accelerator

Facility including the polarized electron source, linear accelerator, recirculator and

SHR. Key ring specifications during this experiment are listed in Tab. 3.1.

Beam energy E 850.0± 0.8MeV (γ = 1663.)
Beam spread ∆E 0.20MeV
Sync. Loss/Turn U0 5.1 keV
Max. Current I 230 mA
Lifetime τ 25 min
Beam Polarization Pb 0.6558± 0.0007± 0.04
Ring length L 190.205 m
Harmonic number h 1812
Rev. Frequency βc/L 1.577 MHz
RF frequency ≈ hβc/L 2856 MHz
RF Wavelength ≈ L/h 10.5 cm
Bending radius ρ 9.144 m
Magnetic rigidity Bρ 2.8353 T m

Table 3.1: South Hall Ring (SHR) specifications.
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Figure 3-1: Plan of the BATES Linear Accelerator Center.

The SHR has 16 dipole magnets each bending the beam by 22.5◦. An RF cavity

compensates for energy loss due to synchrotron radiation. The beam energy E =

850.0± 0.8 MeV is calibrated by a precise field-map of the integrated magnetic field

along the dipoles in the ring [65].

The longitudinal polarization of the electron beam in the storage ring is preserved

by a full Siberian snake on the opposite side of the ring to the internal target [64]. The

snake, designed by the Budker Institute of Nuclear Physics in Novosibirsk, consists of

two superconducting solenoids and 5 quadrupoles. The solenoids rotate the electron

spin by 180◦ about the momentum vector such that the precession of the electron

spins in the north arc of the ring compensates that in the south arc.

The beam current in the ring is measured non-destructively with a zero-flux Lat-

tice DC Current Transformer (LDCCT) [66]. LDCCT uses a saturatable core pri-

mary winding around the beam with a nonlinear magnetic response to the current.

A secondary winding driven by a fixed signal is coupled to the primary. The second

harmonic generated by the nonlinear response is proportional to the absolute beam

current passing through the coil with absolute accuracy of 0.05%. The output voltage

goes to a 16 bit ADC and then a voltage-to-frequency converter (VFC). The number
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of oscillations in the VFC is proportional to the instantaneous beam current passing

through the LDCCT. The digitized voltage is broadcast to the Experimental Physics

and Industrial Control System (EPICS) (Sec. 3.4.2) slow-control system and the num-

ber of oscillations of the VFC are counted in two scaler channels, DCCT and BDCCT.

The trigger supervisor inhibited the counting in BDCCT whenever data acquisition

was inhibited due to electronic dead time, target transition between well-defined states

or high voltage trips. Therefore integration of BDCCT over time measures the actual

charge delivered through the target while the experiment is taking data.

The LDCCT was regularly calibrated with current injected into a calibration loop

and measured by an ammeter with 1 pA resolution. Due to the nonlinearity of the

VFC, the scaler read outs are not exactly proportional to the beam current. The

scalers were calibrated during fake runs when beam was turned off and currents from

0 to 200 mA in 5 mA steps were injected into the calibration loop. The beam current

I, good to 0.5% for currents between 20 and 250 mA, is

I =
(

2.90027 + 3.01409×10−4 S + 6.18094×10−10 S2
)

mA, (3.1)

where S is the DCCT or BDCCT scaler value minus a pedestal of 2400 counts.

During the injection of beam pulses from the LINAC into the SHR, the detector

high voltage power supply systems were ramped down to preset “standby” voltages to

protect the detectors from the injection flash. Once the ring was filled, the detectors

were ramped up, and data acquisition started. The downtime for each fill was about

one to two minutes. The beam intensity in the ring dissipated due to the scattering

of the beam electrons with target gas, residual gas in the ring vacuum and beam halo

scratching beam line components. The maximum current and lifetime achievable

depended on the quality of the stored beam. Fig. 3-2 shows the typical current and

lifetime monitored by LDCCT.

Assuming an exponential decay of the beam current,

I(t) = Imaxe
−t/τ , (3.2)
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DumpData Taking
Inject

Figure 3-2: Inject, data taking and dump cycles in the South Hall Ring. The blue
curve is the beam current stored in the ring. The yellow curve is the measured beam
lifetime. For these series of fills, the ring was filled to 215 mA and dumped at 180mA.
The beam life time was about 30 minutes.

and defining the down time, tdown, as the time during which data acquisition was

inhibited for the detector high voltages to be ramped down, beam in the ring to be

dumped and refilled, and detectors ramped back up to operating conditions, one can

determine the optimal data acquisition time, tDAQ, to maximize the average current,

tDAQ ≈
√
2 · τ · tdown. (3.3)

In operation, Eq. 3.3 was used as a guide to choose the length of the data taking

cycles.

There are 32 beam position monitors (BPM) throughout the ring. There are

synchrotron light monitors which measure the beam position in horizontal and ver-

tical directions. Four plastic scintillator beam quality monitors (BQM) were placed

approximately 1 m downstream of the target to monitor the forward angle scatter-

ing rate. The detector background tended to be minimal when BQM rates were

minimized; hence, they helped the operators to tune the ring for optimal detector

performance. Four beam scrapers (top, bottom, left and right) in the ring, upstream

to the target area, reduced the beam halo. The beam scrapers were retracted during

injection to avoid injection splash and inserted once the beam was stably stored in
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the ring.

3.1.3 Compton Polarimeter

The beam polarization in the ring was monitored in real time by a Compton polarime-

ter [67, 68]. The polarimeter used a 5W 532nm circularly polarized laser. A Pockels

cell was used for fast helicity reversal. The interaction point was upstream of the

injection point and the crossing angle between the laser and the electron beam was

below 2◦. Backscattered photons were detected by a CsI crystal used as a calorimeter

and the laser beam was chopped with a mechanical wheel to allow simultaneous back-

ground measurement. The helicity asymmetry as a function of photon energy was

formed and fit to theoretical asymmetry simulated by Monte Carlo simulation to ex-

tract the beam polarization. The analysis was performed in real time by a dedicated

Compton control-analysis software package for immediate feedback, then the com-

plete data set was analyzed for secondary corrections. The typical energy-dependent

yield and helicity asymmetry from one fill is shown in Fig. 3-3.
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Figure 3-3: The yield (left) and asymmetry (right) of the Compton scattering during
one fill of the storage ring. The total yield (solid black curve) is shown with the the
background (dashed red curve). The laser helicity asymmetry is fit to the theoretical
asymmetry to extract the beam polarization.
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Figure 3-4: Time-dependence of the beam polarization.

The beam polarization was measured with a statistical accuracy of 5% for each

single fill. Main causes of the systematic errors were [69]: 1) Energy calibration of

the CsI crystal calorimeter (±0.03); 2) Laser polarization (±0.02); 3) misalignment

between the electron and laser beam (±0.01). The beam polarization measured by

the Compton polarimeter during 2004 running is shown in Fig. 3-4. The average

polarization for the deuterium production run period from July to October of 2004

was 65.58 ± 0.07stat ± 0.04sys. The uncertainty is dominated by the aforementioned

systematic errors in the polarimeter. Beam polarizations in other running periods are

similar.

A spin flipper [70] was instrumented to reverse the helicity of the electron beam

while it was stored in the ring. It was employed to study the false asymmetry in

the Compton Polarimeter [69]. 16 sets of data were taken, each lasting 5 hours. The

helicity was flipped once during a fill such that the instrumental false asymmetries

in the Compton Polarimeter were canceled. The flipper efficiency, defined as the

polarization maintained after the flip,
(h+ + h−)after
(h+ + h−)before

, was measured to be 96%. It

was concluded that the electron beam was equally polarized in the two helicity states,

∆h = (h+ + h−)/2 = 0.0008± 0.0068.

53



3.2 Polarized Deuterium Target

BLAST utilized an Atomic Beam Source (ABS) for polarized atomic deuterium gas.

Polarized atoms were injected into an open-ended cylindrical storage cell embedded

in the SHR vacuum.

3.2.1 Atomic Beam Source

The BLAST ABS was originally built and used at NIKHEF [36, 71, 72] and moved

to Bates after the accelerator and AmPS storage ring [73] at NIKHEF were closed.

Most of the components were replaced and many redesigned to adapt to the geometric

constraints and the strong toroidal magnetic field at BLAST [54]. The physical layout

of the ABS is illustrated in Fig. 3-5.

The ABS consists of 4 differential vacuum chambers. The nozzle and skimmer

chambers are pumped by 4 turbo pumps with a total capacity of 5240 l/sec, located

on the mezzanine above the detector complex outside of the BLAST toroidal field.

The pumps are connected to the ABS via 1.5 m long, 30 cm diameter pipes. The

6pole-top and 6pole-bottom chambers are each pumped by a 3000 l/sec cryopump.

Heavy magnetic shielding was installed for the cryopumps to operate in the strong

magnetic field.

Molecular deuterium is dissociated into atoms by an intense radio frequency (RF)

field of 27.1 MHz in the dissociator. At the center of the dissociator is a 2 mm thick

Pyrex glass tube with 9 mm inner diameter surrounded by an RF coil. An aluminum

nozzle with 2.1 mm diameter is attached to the end of the dissociator. The nozzle is

cryogenically cooled to 70K to prevent the recombination of atoms into molecules. A

small amount (0.05-0.1SCCM) of oxygen is injected through the dissociator, combin-

ing with the deuterium to form an ice coating on the nozzle. Experience shows the ice

coating further reduces recombination of atoms. In operation, the ice layer becomes

so thick that it blocks the nozzle opening after about a week of operation and the

nozzle must be warmed to room temperature and refrozen again. The procedure takes

about 5-7 hours. The discharge in deuterium sputters the glass and a whitish residual

54



IG 1

V14

V15

IG 3

IG 4

IG 5 IG 6

C1

V11

SP12

SP13

Ch.3 − 6pole top

ligit
Target chamber

Analyzer chamber

Ch.4 −6pole bottom

Ch.2 − Skimmer

IG 2

Ch. 1 − Nozzle

Dissociator

Figure 3-5: Schematic of the Bates Atomic Beam Source (ABS). IG stands for ion
gauges, SP stands for Sextupoles and V11, V14 and V15 are vacuum valves.
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accumulates on the internal surface of the nozzle. The nozzle must be replaced every

3 weeks during deuterium runs. Prior to the integration into the ABS assembly, the

dissociator efficiency was studied by mounting a Quadrupole Mass Analyzer (QMA)

underneath the nozzle [54]. The dissociator efficiency was measured to be ∼ 90%.

The atomic beam ejected from the dissociator is polarized by a series of Stern-

Gerlach type spin filters and RF transitions. The polarization scheme exploits the

degeneracy breaking of hyperfine multiplets in the presence of static magnetic field. In

a single electron atom, the spin of the electron (S) and nucleus (I) couple through the

hyperfine interaction. Under a static external magnetic field, the hyperfine interaction

Hamiltonian can be written as:

HHF =
2

3
hν0I · S + µB(gII + gSS) ·B, (3.4)

where gI = −0.00047 and gS = 2.0023 are the gyromagnetic factors for deuterium

nuclei and electrons respectively, and µB is the Bohr magneton. Fig. 3-6 shows the

energy levels of deuterium under a static external magnetic field. At zero field, the

two possible total spin states, F = 1± 1

2
, of deuterium atoms are in (2F + 1)-fold

degeneracy. The energy gap between the two states is ν0 = 327.4 MHz.

The critical magnetic field Bc characterizes the strength with which the two spins

couple:

hν0 = µB(gS − gI)Bc = 117.4G. (3.5)

When a static external magnetic field is applied, the degeneracy is fully broken and

each of the two multiples splits into energy substates. At large B (B >> Bc) the

electron and nuclear spins decouple and the spin projections mS and mI become

“good” quantum numbers. The hyperfine interaction can be treated as perturbations

upon the interaction between individual spins and the external field; therefore, the

energy split increases linearly with respect to the external field. In the target chamber,

a strong target holding magnetic field defines the quantization directions. The field

strength is 400 to 600 G depending on the required target spin orientation. Therefore

the nuclear polarization of the ensemble of deuterium atoms is entirely determined
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Figure 3-6: Breit-Rabi diagram of the energy levels of deuterium in the presence of a
static external magnetic field.

by the relative populations nk(k = 1, ..., 6) of the hyperfine states.

The atomic states are filtered by two sets of sextupole magnets. The top sextupole

includes 4 magnets with tapered inner diameter, the bottom sextupole is composed

of 3 magnets with constant inner diameter. The magnets are mounted on retractable

frames and can be moved out of the jet path via pneumatically activated linear

feedthroughs. Each of the sextupole magnets consists of 24 permanent magnet plates

with direction of magnetization rotated by 30◦ from plate to plate.

The magnetic field inside an ideal sextupole magnet is

Bx = B0
x2 − y2
r20

, By = −B0
2xy

r20
, (3.6)

where B0 ∼ 12 kG is the pole-tip field and r0 ∼ 1cm is the pole-tip radius. The

magnetic moment of the atoms is dominated by the electron spin since µB >> µN

and in the strong sextupole field, the nuclei and electron spin projection mI and

mS are individually conserved. Therefore when the atomic beam passes through the

sextupole, the electron magnetic moment is adiabatically aligned to the magnetic

field µ = µB or µ = µBgSmS where mS = ±1
2
is the spin projection of the electron
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spin along the direction of the field. The force exerted on the atoms by the sextupole

magnetic field is therefore,

F = ∇(µ ·B) = µB0∇

(

r2

r20

)

= 2µB0
r

r20
(3.7)

The force is radial which means the atoms are focused or defocused depending on

whether the electron spin is parallel or anti-parallel to the field. Effectively this

separates the states 1-3 from 4-6 in Fig. 3-6.

The ABS is embedded in the BLAST toroidal magnetic field (Sec. 3.3.1) which

is over 2 kG in the vicinity of the sextupoles. Although the approximately constant

external field does not change the magnitude of the force, it does affect its direc-

tion, hence reducing the focusing efficiency. The sextupoles are therefore encased

in magnetic shields. A ray-tracing program is also employed to study the sextupole

performance and optimize the location and shape of the magnets. A simulation of the

atomic beam passing through the sextupole optics of the ABS is shown in Fig. 3-7.

The simulation was used to optimize the design of the sextupole magnets.

z
 
(
m
)

r (m)

Figure 3-7: Simulations of the atomic beam passing through the ABS optics [54]. The
first sextupole system focuses atoms in hyperfine states with mS = 1

2
(B >> Bc). In

the left figure the electron spins transition from mS = +1
2
to mS = −1

2
between the

two sets of sextupoles and get defocused in the second. In the right figure the atoms
keep their electron spin and get focused in the second sextupole set.
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When a time-varying RF field of frequency hν = ∆E is applied in addition to the

static magnetic field, transitions are induced between two hyperfine states separated

by energy ∆E. There are two types of RF transitions. The σ-transition is induced

by an RF field parallel to the static field, while the π-transition is induced by a

perpendicular RF field. σ-transitions obey the ∆mF = 0 selection rule and the

selection rule for π-transitions is ∆mF = ±1.

There are three types of RF transition units. The Weak Field Transition (WFT)

is a π-transition unit operating around B/Bc = 0.1 and a frequency of 5-15 MHz.

Within this regime of static external field, the WFT induces transitions across the

very small energy gaps within the same F multiplet. Transitions between all substates

occur at the same time. For example, the cascade transitions 1-2,2-3 and 3-4 result in

the so-called 1-4 WFT transition wheremF is reversed. The Medium Field Transition

(MFT) for BLAST deuterium target uses a static field around B/Bc = 0.2 ∼ 0.3 and

ν ∼ 35 MHz. It is a π-transition unit between sub-states within the same F multiplet.

The resonances between sub-states in this field regime are separated from each other,

thus one can selectively induce certain transitions. The Strong Field Transition (SFT)

operates at B/Bc ∼ 1 and a frequency around 400 MHz. σ-transitions between states

belonging to different multiplets (∆F = ±1) are induced.

By selecting the proper sequence of transitions, a polarized deuterium beam in

various spin states can be achieved. As an example, the transition scheme for deu-

terium with Pz = +1 and Pzz = +1 is shown in Tab. 3.2. During the deuterium

data taking, the target switched among three spin states: (Pz = +1, Pzz = +1),

(Pz = −1, Pzz = +1) and (Pz = 0, Pzz = −2), or hyperfine states (1, 6), (3, 4) and

(2, 5) respectively. The duration between consecutive target state flips was about 5

minutes and the sequence of spin states was randomized. The correlation between

target spin and electron beam helicity is therefore minimal as the beam helicity was

reversed every fill, which typically lasted 10 to 15 minutes.

A Breit-Rabi Polarimeter (BRP) with a dipole magnet was used to monitor the

ABS performance. The dipole magnet has a very strong (2.5 kG/cm) and uniform

gradient and is placed after a 2 mm diaphragm below a small sampling outlet of the
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Table 3.2: The ABS transitions and sextupole magnet process for producing deu-
terium with positive vector and tensor polarization. The six ni entries in the leftmost
column correspond to the populations in the six hyperfine states in Fig. 3-6 as they
enter the ABS transition region. As the atomic beam progresses through the ABS,
various states are switched and/or removed.

storage cell. Three compression tubes (CT) are placed 1.5 m below the magnet 1.

When the dipole magnet is off, the central CT collects both atoms and molecules.

With magnet on, atoms are deflected into the left or right CT depending on their

polarizations. Therefore the atomic fraction and their polarization in the ABS efflux

can be measured; thus providing an in-situ diagnostic of ABS performance. However,

it only samples the center portion of the ABS flow, and therefore could not provide

reliable measurement of the overall dissociator efficiency and ABS polarization.

3.2.2 Internal Target

The atomic beam from the ABS is injected into a T-shaped storage cell which confines

the target gas to the region around the electron beam, resulting in an increase in the

target thickness by orders of magnitude in comparison to a pure jet target. The cell

is a 15 mm diameter and 60 cm long cylindrical tube manufactured from 50 µm thick

aluminum foil. The atoms are injected through an inlet tube of 11.9 mm diameter and

15 cm length at the middle of the cylinder. The dimension of the inlet is so chosen to

approximately match the conductance of a half-cell. The gas atoms disperse through

the length of the cell and are pumped out once they exit at either end. Both the

inlet and the cell are coated with Dri-film to minimize depolarization [74] and cooled

1Compression tubes are small vacuum cavities with an ion gauge installed inside. When gas flow
is injected into the cavity, the pressure built up in the cavity is proportional to the inflow.
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to around 100 K to increase the target density and reduce depolarization as well.

The cell temperature is monitored with sensors on the target mounting frame and is

recorded at 1 sec interval into the EPICS data stream. A small sampling tube was

attached at the middle of the cell directly facing the injection inlet. It allows direct

sampling of the atomic beam from the ABS into the BRP as mentioned in Sec. 3.2.1.

A schematic drawing is included in Fig. 3-8.

z (cm)

(z)ρ 

Beam

From ABS

Storage  Cell

Figure 3-8: Schematic of the storage cell. The gas density profile along the cell is
approximately triangular.

The conductance of the target cell is the sum of conductances of the storage cell

and the inlet tube,

C = Ccell + Cinlet. (3.8)

The conductance of a cylindrical tube of length l and diameter d can be expressed

as [75]

C =
v0
4

d2

4π
w, (3.9)

where

v0 =

√

8kBT

πM
, w =

8

3a
− 36 ln a+ 91

18a2
+

32 ln a+ 8

3a3
− 8 ln2 a

a4
, and a =

2l

d
.
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T is the temperature of the cell and inlet and M is the mass of the target particles.

To the lowest order of a, Eq. 3.9 reduces to 2

Ccell = 2C0
d3cell
lcell/2

√

T

M
, and Cinlet = C0

d3inlet
linlet

√

T

M
, (3.10)

where C0 = 3.81×103 cm/s is the conductance constant andM is measured in atomic

mass units (a.u.). The factor of 2 in Ccell is due to the two open ends of the cell. When

a gas flux of Φ is injected from the inlet, the density in the cell forms a triangular

profile [75, 72],‘

ρ(z) =
2Φ

Clcell

(

lcell
2
− |z|

)

. (3.11)

The integrated density between −l/2 and l/2 is then,

ρ =
Φl

C

(

1− l/2

lcell

)

. (3.12)

A strong magnetic holding field for the target is provided by transverse and lon-

gitudinal coils wound around iron yokes above and below the scattering chamber 3.

The function of the holding field is two-fold. First, the field defines the orientation of

the quantization axis of the target nuclear polarization. Secondly, the magnetic coils

generate a strong field a few times the critical field Bc between −20 to 20 cm along

the target cell which suppresses the depolarization processes due to the hyperfine in-

teraction (Sec. 3.2.1). Beyond the central 40 cm, the magnetic holding field decreases

dramatically, therefore only the events originating from the central 40 cm of the tar-

get are used for physics analysis. By adjusting the current in the coils, the target

spin can be set to arbitrary directions in the horizontal plane. Small openings in the

coils and iron plates have been left to allow the passage of the inlet to the sampling

tube from the target cell. These discontinuities create a slight non-uniformality in

the holding fields.

The longitudinal and transverse target holding field were measured prior to the in-

2Akihisa Shinozaki pointed out that the lowest order approximation overestimates the conduc-
tance by as much as 14.87%. [76]

3The magnets were shipped from NIKHEF and only small adjustments were applied.
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stallation of the cell into the target chamber. In-situ surveys were performed in April

2004 and January 2005 during down time between production runs. Components of

magnetic fields were measured at positions along the target and the holding field di-

rection was calculated. Upon the completion of the production runs, the holding field

direction and intensity were measured every 2 cm along the target in June of 2005. All

measurements were made using a 3-D Hall Probe. During the deuterium production

runs, tensor asymmetries in elastic electron deuteron scattering were used to monitor

the average holding field angle in a semi-realtime fashion (Sec. 4.3.3). Tensor asym-

metries in the D(e, e′d) reaction originating at different locations along the cell were

used to check the spin angle profile obtained from the surveys. These measurements

are compared to simulations by the electromagnetic calculation package TOSCA [77].

The various spin angle profiles are show in Fig. 3-9. There are discrepancies

between the Hall-Probe surveys at different times. The discrepancy is clearly sys-

tematic, for example the June 2005 surveyed spin angle profile is every-where below

the January 2005 one by 0.5-1◦. There are also discrepancies between the survey and

the tensor D(e, e′d) results. These discrepancies, those seemingly small, have large

impact on the analysis presented in this work. Sec. 4.5.3 discusses these discrepancies

in detail.

Over the duration of time the atoms spend in the cell, physical processes happen

that could lead to a decrease of the nuclear polarization. The residual interaction

between the electron and nuclei spins could induce transitions between states with

different mI . The beam RF did not induce any depolarizing resonances in the holding

field strength [78]. When an atom collides with the cell wall, the electron spin interacts

with the magnetic dipoles found in the molecules in the cell surface through spin

exchanges and Pauli exclusion interactions [79]. Depolarization then occurs through

hyperfine interactions. The deuterium target works in a magnetic holding field which

is a few times as strong as the critical fieldBc, therefore the polarization relaxation due

to residual hyperfine interaction and cell wall collision is weak. The dri-film molecules

are chemically saturated, therefore they have no free electron orbits or electric dipoles

to bond with the target gas atoms, thus reducing the spin spin exchange interaction
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Figure 3-9: Target holding field components and the holding field direction along
the cell. On the top is the field for nominal spin angle of 32◦ and on the bottom
the nominal spin angle of 47◦. Transversal (Bx) and longitudinal (Bz) from survey
measurements, the TOSCA simulation are displayed. The spin angle calculated from
the fields (Apr. 2002, Apr. 2004, Jan. 2005 and June 2005), elastic electron deuteron
tensor asymmetries and TOSCA simulations are shown. The 2002 survey was made
before all the magnetic materials were installed, therefore is less reliable than the
later holding field surveys (2004 and 2005 ones).
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between the atoms and the surface.

The atoms could recombine into molecules when they collide. It is not clear if the

atoms maintain their nuclear polarization and how much polarization they maintain

if any. There have been inconclusive evidences that the recombined molecules do

preserve some of the nuclear polarization 4. Nevertheless, high nuclear polarizations,

Pz = 0.86 and Pzz = 0.68, were observed through nuclear reactions in the experi-

mental data 5. This leads to the belief that either there is no strong recombination

in the target cell or the molecules remain highly polarized. Tensor asymmetries in

D(e, e′d) reaction originated at different locations along the cell were used to measure

the overall depolarization in the cell (Fig. 3-10). The reduction in tensor polarization

from the cell center to the ±20 cm ends is less than 8%.
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Figure 3-10: Reduction in Pzz from center of the cell to the ends measured by tensor
ed-elastic asymmetries.

During early 2003, the dri-film coating sustained severe damage and showed visible

4NIKHEF reported measurements in which the molecules are observed to preserve as high as
81% of the nuclear polarization.

5The tensor asymmetries in electron deuteron elastic scattering was used to measure the target
tensor polarization, and the vector asymmetries in the deuteron electro-disintegration was used to
measure the product of electron beam and target vector polarization. Given the electron beam
polarization measured by the Compton polarimeter (Sec. 3.1.3), the target vector polarization was
derived.
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burn marks after being exposed to the beam halo. A 10.2 mm aperture tungsten

collimator was installed immediately upstream of the cell to protect it. The collimator

generated significant positron showers into the drift chamber and underwent several

redesigns to reduce the impact on drift chamber performance. The final design was

installed on March 9th, 2004 6.

The nuclear polarization of the target gas in the storage cell was measured by elec-

tron scattering reactions. This method measured the combined polarization of atoms

and molecules in the target cell, as opposed to the polarization of the atomic compo-

nent alone with the ion-extraction polarimeter employed by NIKHEF [80]. Therefore,

precise knowledge of the molecular fraction in the cell and molecular polarization is

not required. The drawbacks of the approach are: 1) the momentum transfer re-

gion used for polarimetry can not be presented as new measurements; 2) reliance

on theoretical predictions cause the results to depend on the particular models used,

therefore reducing the discrimination power of the data. Sec. 4.6 is devoted to the

uncertainty introduced by the various models.

The product of beam and target vector polarization was obtained by comparing

the observed asymmetries in the exclusive electro-disintegration channel to theoretical

calculations at low Q2 and low missing momentum. The target tensor polarization

was determined by comparing low Q2 tensor asymmetries in electron-deuteron elastic

scattering to the prediction of theoretical models. Knowing the beam polarization

from the Compton Polarimeter (Sec. 3.1.3), the target vector polarization was then

deduced to be Pz = 0.858 ± 0.014stat ± 0.056sys for 2004 running period and Pz =

0.678± 0.005stat ± 0.045sys for 2005 [53]. Tensor polarizations were determined to be

6The first collimator was installed on September 23rd, 2003 after a long period of down time.
H(e, e′p) data taken from a 40 cm long target cell immediately afterward measured a polarization
of Pt = 0.39±0.03, compared to the optimal polarization of Pt = 0.80±0.003 obtained in late 2004.
Intense effort was devoted to ABS and target performance during the Spring of 2004, including
addition of pumping capacity, cooling contact on the inlet tube, and a new target cell. Due to
constrained in time and resources, the impact on target polarization by each individual improvement
was not separately studied. The data immediately before and after the installation of the new
collimator did not show immediate improvement in target polarization. Experience did show that
the quality of the target cell is critical. All the production data with high polarization were taken
with the same target cell, while other cells failed to perform as well.
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Pzz = 0.678±0.020stat±0.034sys in 2004 and Pzz = 0.558±0.020stat±0.028sys in 2005 7.

The determination of tensor polarization and the various uncertainties involved will

be discussed in detail as a part of data analysis (Sec. 4.3.3). Both polarizations were

monitored daily during the experiment. Weekly Pz results for 2004 and daily Pzz

results are shown in Fig. 3-11.
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Figure 3-11: Weekly target vector polarization Pz for 2004 running period [53] and
daily tensor Pzz polarization over the course of the experiment in both 2004 (left)
and 2005 (right)

7The cause is not understood for the reduced polarizations observed in 2005. One plausible
conjecture is that the inner surface of the target cell was damaged from the prolonged exposure to
the beam resulting in stronger depolarization effect. Beam current in 2005 is almost twice as high as
in 2004 which may deliver more power to the cell, causing more damage and temperature fluctuation.
Though the holding field in 2005 was weaker to orient the target spin in a different direction from
2004 (See beginning of Chap. 4), it was concluded that the weaker holding field was not the cause
after the same reduced polarization was observed at the same holding field configuration as in 2004.
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The difference between vector and tensor polarizations is not well understood. One

suggestion is that transitions only occur between adjacent states in the Breit-Rabi

diagram where energy gaps are narrow (Fig. 3-6), i.e., 1↔ 2, 2↔ 3, 4↔ 5 and 5↔ 6.

While each of these transition changes the vector nuclear polarization by 1 (e.g.,

Pz = 1→ Pz = 0), the tensor polarization is changed by 3 (e.g., Pzz = 1→ Pzz = −2).
Therefore the depolarization processes have a larger impact on the tensor polarization.

For example, suppose initially the target is in a equal mixture of state 1 and 6, hence

having Pz = 1 and Pzz = 1. If an equal fraction ξ of the 1 and 6 states undergoes

transition to 2 and 5 respectively, the final polarizations will be

Pz = 1− ξ, Pzz = 1− ξ + (−2)× ξ = 1− 3ξ. (3.13)

Assuming the initial polarizations are 0.95 for both vector and tensor states, the

transition probability ξ can be solved to be 9.5%.

3.2.3 Unpolarized Gas Buffer System, ABS intensity

For calibration purposes, an Unpolarized Gas Buffer System (UGBS)8 was developed

to deliver unpolarized H2 or D2 gas directly into the target cell. The system was

used to determine the intensity of the ABS efflux and study the over efficiency of

the detector system. It was based on the simple idea that when gas is allowed to

discharge from an unknown volume, the intensity of the gas flow from the volume is

proportional to the rate at which the pressure decreases.

Fig. 3-12 is a schematic of the UGBS. The system consisted of two gas tanks with

well known volumes. One of the tanks served as a differential reservoir to fill the

buffer tank. The pressure P in the buffer was monitored by Baratrons with absolute

error 0.012 torr and was recorded in the EPICS data stream at 1 sec intervals. The

buffer tank has a volume of V = 3.068 ± 0.018 l, calibrated by flowing well known

flux of nitrogen into the tank and measuring the differential pressure increase. The

8The UGBS was proposed in writing in 2002 by Z.-L. Zhou, etc. and implemented in late 2003
to replace the unpolarized gas feed system based on Mass Flow Controller (MFC) technology, which
was not able to deliver precisely controlled gas flow at the low intensity comparable to the ABS.
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Figure 3-12: Schematic drawing of the UGBS.

calibrating 1 SCCM nitrogen flow was controlled by a Mass Flow Controller with

0.5% accuracy.

The buffer was filled with gas at preset pressure Phigh and was allow to discharge

passively to into the target cell. The buffer pressure drops exponentially and was

refilled to Phigh from the reservoir when a preset minimum pressure Plow was reached.

A discharge cycle typically lasted 20-30 minutes. The UGBS flow rate ΦUGBS can be

determined from the ideal gas law

ΦUGBS = −2 V

kBT

dP

dt
, (3.14)

where kB is the Boltzmann constant, T is taken as the ambient temperature in the

South Hall measured by thermostats in the Hall and the factor of 2 represents the fact

that each molecule contains 2 atoms.
dP

dt
is determined by fitting the buffer pressure

P as an exponential decay in time. Fig. 3-13 shows the buffer pressure measured

as a function of time during runs 10935 and 10937 taken on September 7th of 2004.

The fit is also displayed in the figure. Twelve hours of UGBS runs were taken on

that day. The cell temperature for that period of time was 94.04± 0.65 K, the mean
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Figure 3-13: Pressure in the UGBS as a function of time. The blue curve is the
pressure in the buffer bottle measured by the Baratron, the red curve is the fit of the
data to an exponential decay.

temperature in the South Hall was 302.1± 3.9 K and the average buffer pressure was

2.01 torr. The cell conductance for D2 molecules at this temperature is calculated

from Eq. 3.9 to be 5.452×103 cm3/s. The average UGBS flux extracted from the fit

is 1.504± 0.03916 atoms/sec, giving a target thickness of 7.36± 0.19×1013 nuclei/cm2

over the central 40 cm of the target cell 9.

Calibration runs using the UGBS as the target source were taken in between

polarized deuterium runs during ABS maintenance on September 7th and October

5th in 2004 and on April 15th, 23rd and May 13th of 2005 with buffer pressure set

to about 2 torr, which produces comparable event rates to the ABS. The ABS flux

intensity ΦABS is determined by

ΦABS

ΦUGBS

=

√

MD2

MD

ρABS
ρUGBS

=

√

MD2

MD

RABS

RUGBS

, (3.15)

where ρABS and ρUGBS are the target thickness, RABS and RUGBS are the number

events observed under the same event selection rules per Coulomb of integrated beam

current during ABS and UGBS runs respectively. Comparing the yields in elastic

9The uncertainty is dominated by the dP
dt

term. Each discharge has a pressure drop of about
0.1 torr and the Baratron has an absolute accuracy of 0.012 torr, therefore the accuracy in the fitted
pressure decay rate is roughly ∼ 10%√

n
with n being the number of discharges.
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electron deuteron scattering, the long term average ABS flux intensity as determined

from Eq. 3.15 is ∼ 2.3×1016 atoms/sec for both the 2004 and 2005 run period. Actual

flow intensities fluctuate around this average value. The corresponding target thick-

ness is ∼ 6× 1013 nuclei/cm2, leading to a typical luminosity of ∼ 4× 1031 /cm2/sec

with a beam current of 100 mA.

This method does not require precise knowledge of detector efficiencies. The un-

certainties in the ABS target thickness are introduced by the error in the UGBS target

thickness (2-3%), uncertainty in the cell conductance (which could be significant and

is not known conclusively), and possible shifts in detector efficiency between ABS

runs and UGBS runs, which were taken close to each other in time. The errors in

cell conductance cancel out in the ABS intensity extraction; however, the assumption

that the target gas is purely atomic introduces an additional error. As the dissociator

efficiency is believed to be at the 90% level and the molecules do not focus in the sex-

tupoles, the atomic fraction produced by ABS is believed to be very high. However,

the amount of recombination in the storage cell is not known.

3.3 The BLAST Detector Package

The BLAST detector complex is instrumented around eight coils of toroid magnet

which divide the space around the beam line into eight sectors. The top and bottom

sectors between the coils contain the ABS and target diagnostics. The two horizontal

sectors host the detector packages featuring a left-right symmetrical design. Scattered

particles originated from the target cell pass through, in an radially outward sequence,

Drift Chambers (WC), Čerenkov detectors (CC), time-of-flight (TOF) scintillator and

neutron counters (NC). Neutron detection capability in the right sector is augmented

by two extra sets of scintillator (LADS). The neutron detectors thus are the only

asymmetric components of BLAST. A coordinate system is defined for the BLAST

detector with Z along the beam line, pointing down stream, Y axis pointing vertically

upward andX pointing into the left sector of the detector as viewed along Z direction.

The BLAST detector package and the magnet coils are shown in Fig. 3-14. The elastic
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electron-deuteron scattering experiment made use of the wire chambers and time-of-

flight detectors, which will be detailed in this section. The Čerenkov detectors are

not used in this work.

3.3.1 BLAST Toroid

The BLAST toroidal magnetic field is generated by eight copper conductor coils

symmetrically arranged around the beam line, as shown in Fig. 3-15. The toroidal

design minimized the field gradient in the target chamber, and the field at PMTs used

in the Čerenkov and TOF scintillators. Also, the Lorentz force on charged particles is

in the plane spanned by the beam line and the momentum of the particle, hence the

particles stay “in-plane”, making the reconstruction of trajectories more accurate and

less demanding computationally. Each coil consists of two adjacent layers of thirteen

windings of 1.5 × 1.5 in2 hollow copper conductor, with water coolant circulating

through the core. The coils are shaped to provide maximum dispersion for the forward

electrons and have a 1-meter-wide opening in the back to accommodate the ABS and

internal target. The coils operated, during all production runs, at their maximum

current of 6731 A to provide maximal momentum resolution. The maximum magnetic

field at this current is 3800 Gauss, which occurs ∼ 1 m from the beam line in the

vicinity of the drift chambers. Strong aluminum frames support the coils in place,

and the maximum deflection of the frame is 7-8 mm when the field is energized at

full strength.

The geometric position of the coils were surveyed and the field carefully mapped

before the detectors were installed [81, 82]. The mapping was done with an automated

x-y-z table with spatial resolution 0.05 mm and two three-dimensional Hall probes

with 0.1% precision. The probe positions (in BLAST coordinate system) were sur-

veyed at 10 to 20 points and related to the x-y-z table coordinates. The uncertainties

in the probe positions was ∼ 1 mm. The table coordinates and fields were recorded at

each of the ∼ 43, 000 points, measured in a grid of 5 cm spacing in each direction. The

mapped field was interpolated into a rectangular grid of 5 cm step in each direction

in the BLAST coordinate system and is analytically extended beyond the measured
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coils of the toroid. The BLAST coordinate system is shown in the bottom figure.
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Figure 3-15: Magnetic coils with the supporting subframes in BLAST.

region for a more robust trajectory fitting. The field is also modeled in TOSCA and

an analytical Biot-Savart calculation and the field map agrees with both models to

within 1%. The 7-8 mm displacement observed in geometric survey of coil positions

is also confirmed by the Bio-Savart calculations where coil positions are moved to fit

the observed field values. The interpolated and extended grid covers a rectangular

volume of −200cm ≤ X ≤ 200cm, −70cm ≤ Y ≤ 70cm and −10cm ≤ Z ≤ 290cm

(See Fig. 3-14 for the definition of the coordinate system). There are about 150 points

in the 143, 289-point grid where the mapped values differ from the Bio-Savart calcula-

tion by more than 200 G. This is attributed to occasional x-y-z table jamming during

the mapping, which caused missing field values for these points. The measured field

value is replaced with the Bio-Savart calculation for these points. The field-map of

By in the central horizontal plane is shown in Fig. 3-16.

3.3.2 TOF Scintillators

Sixteen time-of-flight (TOF) scintillators in each sector provided the trigger and

timing-based particle identification [52]. The TOFs covered the entire geometric
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Figure 3-16: Magnetic field map of By in the central horizontal plane of BLAST.

acceptance of the drift chambers. All the TOFs were made of 2.5 cm thick Bicron

BC-408 scintillator. The most downstream four paddles were each 120 cm tall while

the remaining twelve were 180 cm tall. The forward four TOFs were shorter because

they were mounted closer to the beam line, needed to cover a smaller azimuthal ac-

ceptance of wire chamber at forward angle and had a higher background rate caused

by their positioning. All but the last four had 10 mil (0.254 mm) of lead shielding

in front of the scintillator material 10. A photomultiplier tube (PMT) was mounted

on each end of each TOF paddle through Lucite light guides. The light guides bent

the path of light such that the PMTs could be mounted with their cylindrical axis

perpendicular to the residual BLAST field. The TOFs were mounted on retractable

aluminum supporting subframes which could be pulled open to provide space for drift

chamber and target work. Fig. 3-17 is a photograph of the right sector before the

drift chambers were installed. The TOFs with their PMTs mounted can be seen. The

subframe was open.

The PMT signals were split into two branches. One was delayed and passed into a

Lecroy 1881M FASTBUS ADC module, which measured the energy deposited by the

10The lead shielding was removed from the last four TOFs in winter of 2003 because they stopped
recoil deuterons in elastic electron deuterium scattering before they could reach the scintillation
material.

75



Figure 3-17: Upstream View of BLAST, Right Sector TOFs and Coils; the first CC
box mounted behind the first four TOFs can also been seen. The electron beam
comes out of the paper towards the reader off the right edge of the picture.

particle inside the scintillator. The delay allowed a trigger decision to be made prior

to the ADC digitization. The other branch went to a constant fraction discriminator

(LeCroy 3412 CFD), removing the dependence of the timing on signal strength(walk

effect). A coincidence between the two PMTs was always required to reduce random

backgrounds. The timing signal from the two PMTs gives both the mean time t and

the position p of the hits along the length of the scintillator,







t = (tdchtd + tuchtu)/2− L/vsc
y = (tdchtd − tuchtu)vsc/2

, (3.16)

where tu,dch ≈ 50 ps/channel is the resolution of the TDC modules, vsc ≈ 14.7 cm/ns

is the effective speed of light in the scintillator, and tu and td are the TDC values

from the top and bottom PMT respectively, discriminated with the CFD. tch was

calibrated for each PMT by adding predetermined delays to the signals from each

PMT and measuring the corresponding shift in the TDC channels. vsc is calibrated

for each scintillator by matching the range of y to the length of the TOF paddle. The
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mean time t is independent of the position y. The timing resolution of the TOFs was

measured to be 320 ps (FWHM) or ∼ 150 ps (σ) on a cosmic ray test rig prior to

installation in the South Hall, so the position resolution is therefore ±3 cm [52]. At

a kinetic energy of 0.4 GeV or lower, the typical time difference between a pion and

a proton, or between a proton and a deuteron, traveling from the target to a TOF

is ∼ 10 ns. Therefore the timing resolution well satisfies the demand for particle

identification 11.

BLAST timing is relative to the earliest TOF to be hit rather than using a start

counter. The mean-timed signal from the first TOF detector to be hit generates

the start strobe which triggers all TOF TDC modules, and a delayed signal from

each TOF stops the corresponding TDC. Therefore the TDC of the triggering TOF

measures the electronics delay of that particular detector (the self-timing peak). The

time difference of other TOFs relative to the self-timed scintillator can be extracted,

where the common start cancels as illustrated in Fig. 3-18 and Eqs. 3.17. ttrig is the

TDC value from the triggering scintillator, ti represents the TDC in a later TOF hit

in the ith paddle, δtrig and δi are the electronics delay for the corresponding TOFs

and ∆ti is the actual time elapsed between the start strobe and the hit in the ith

TOF.


















ttrig = δtrig

ti = (∆ti + δi)

ti − ttrig = ∆ti + (δi − δtrig)

(3.17)

Although the term δi− δtrig in Eqs. 3.17 can be corrected in software, the BLAST

drift chambers require a constant common stop strobe. The drift chamber TDC

modules are started by the signal from the sense wires and stopped by a strobe

generated by the delayed mean-timed signal from the triggering TOF. This requires

that the delays in different TOFs be the same, such that the stop strobe is constant

regardless of which TOF generated the stop strobe so long as the particle traveled at

close to the speed of light. During the commissioning of the BLAST detector, a thin

11The e+ observed in BLAST detector are mostly showers from upstream. They typically have
low momentum (p < 0.1GeV ) and are easily identified. Additional electron-pion discrimination is
provided by the CC.
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t trig = δ trig

t i = t i+ δ i∆

t i∆ δ i

= t i+ δ i∆ −δ trig

i − tt trig

Starting all TDC modules
TOF 1 hit by a fast particle

Stops TOF 1 TDC module
Delaied TOF 1 signal

TOF i hit by a slow particle

Delaied TOF i signal
Stops TOF i TDC module

T

T

Figure 3-18: BLAST TOF timing. The start strobe was generated by the first TOF
to be hit. After a period of ∆ti, the i

th TOF was hit. The TDC module of each TOF
was stopped by the delayed signal from the corresponding TOF. Therefore the TDC
for the trigger TOF measures the electronics delay δtrig for that channel, while the
TDC of the other TOF i measures ti = ∆ti + δi. The Difference between the TDCs
is therefore ti − ttrig = ∆ti + (δi − δtrig). The term δi − δtrig is corrected in software
leading to measurement of the true time difference ∆ti between the two TOF hits.

scintillator similar to the TOF paddles were installed adjacent to the target chamber

in a horizontal orientation. Particles from the target cell had to pass through the start

counter before they reached the TOF scintillators. The BLAST toroidal magnetic

field was turned off during this measurement; therefore, the particles traveled along

straight tracks. Due to the extended target and the width of the TOF paddles, the

pathlength of the tracks hitting any one TOF is known to within ±20 cm; thus the

absolute time of flight from the start counter to the TOF is know to within ±1 ns.

The mean-timed signals from the start counter was used to generate the start strobe

leading to absolute timing measurements. The programmable delay for each TOF

was adjusted to within ±1 ns in each sector. Fig. 3-19 illustrates the setup. The start

counter was removed once the delays were properly adjusted. During production

runs, horizontal cosmic rays passing through one TOF in each sector were used to

cross check the relative timing of the left and right sectors [83].

A flasher system was used to monitor changes in the TOF timing. A single

laser pulse from an LSI model VSL-337ND-S ultraviolet nitrogen laser unit was split

into multiple fiber optic cables, each of which was attenuated and coupled to the
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Start Counter

Figure 3-19: Calibration of absolute timing using a start counter during the commis-
sioning before the wire chambers were installed. The start counter was removed after
the calibration was completed to make room for the chambers. With the start strobe
generated by the start counter, the absolute time of flight was measured by the TDC
difference between the start counter and the TOF paddle. With the BLAST toroidal
field turned off, the path lengths were known to within ±20 cm. The electronic delays
for each TOF paddle were adjusted to within ±1 ns.

center of a TOF, Čerenkov or neutron detector scintillator. The laser was pulsed at

1 Hz. Flasher events were recorded in the data stream along with events triggered

by scattered particles from the target and were used to monitor time shifts. Flasher

events define sharp peaks in the TOF TDC spectra and any shift in the timing, for

example after replacement of a broken PMT, was identified in the shift of the peaks.

The TOF efficiency was studied with ep-elastic events from hydrogen target runs

by Dr. Chris Crawford as a part of his dissertation [83]. The efficiency of all the

TOFs were shown to be close to 100% (Fig. 3-20). Unfortunately, the selection of

deuterons require strong TOF timing cuts, and the under-constrained production

channel kinematics exclude similar studies of TOF efficiency for deuterons and pions.

However, there is no strong evidence that TOF efficiencies depend on particle species

strongly.
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Figure 3-20: Efficiency of each TOF along the width of the scintillator. Figure taken
from Ref. [83]. The horizontal axis is the horizontal position where the tracks impact
the TOF paddles as determined from the reconstructed trajectories. The purple
curve shows the distribution of events where a TOF hit is expected, the red curve
corresponds to events where the TOF failed to trigger and the green curve is the TOF
efficiency. The gap between each TOF is clear.

3.3.3 TOF Based Particle Identification Algorithm

Because the BLAST TOF detectors did not have a start counter during production

data taking, the absolute time of flight could only be obtained by making assumptions

about the particle identification that triggers the common start strobe. The algorithm

is illustrated in Fig. 3-21. The track reconstruction algorithm returns the momentum

as well as the path length of the track from the vertex to the front plane of the hit

TOF detector. The absolute time of flight of the triggering particle is then easy to

calculate if one assumes it is an electron. The time tv when the reaction happened at

the vertex is found by tracing the electron back in time. The absolute time of flight

of the other particle in the opposite sector is then T = t1 − tv. Knowing the track

length L and momentum p of the other particle, two particle identification (PID)

parameters, speed of flight (β) and particle mass (m) can be extracted.

Fig. 3-22 shows the relation between reconstructed speed of flight and the particle
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Figure 3-21: Particle identification algorithm. The time when the reaction occurred
at the vertex is determined by tracing back the triggering particle. The absolute time
of flight T , the speed of flight β and the mass m of the other particle in the event
can be reconstructed from its momentum p and length of trajectory L.

momentum for positively charged particles detected in the left sector during a series

of deuterium target runs. The separations between e+, π+, proton and deuteron

are clearly visible. The calculated mass spectrum is also shown in Fig. 3-22 where

π+, proton and deuteron mass peaks are identified and the standard deviations (σ)

obtained by fit to Normal distributions. Several factors contribute to the width of the

peaks. The path lengths are known to δL ∼ 20 cm, which, combined with the TOF

timing resolutions, leads to δT ∼ 1.5 ns resolution in absolute time of flight T . For

400 MeV protons, the time of flight is typically ∼ 20 ns over a typical path length

& 250 cm, hence the uncertainty on speed of flight is δβ ∼ 0.05. The resolution in

the reconstructed mass is therefore ∼ 100 MeV/c 12.

12A more detailed error analysis is included as follows. With ultra-relativistic particles gener-
ating the trigger, δβ0 is very small. Therefore the error in track length dominates the error in
L0

β0c
. Even though the intrinsic timing resolution of each TOF is on the order of 0.15 ns, the

calibration off electronics delay between any pair of TOF ∆t is only good to about 1 ns. For

T = t1 − t0 + L0

β0c
, δT =

√

δt21 + δt20 +∆t2 +

(

δL2
0

β0c

)2

≈ 1.5 ns, when δL ∼ 20 cm, T ∼ 20 ns and
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Figure 3-22: The timing based particle identification parameters. The β-p relation
for the positively charged particles observed in the left sector is shown on the left.
Ideal β - p relationships for typical particle species are marked by red curves. The
reconstructed mass spectrum for positive particles is shown on the right. Three peaks
are visible in the spectrum. They are fit to Gaussian distributions and identified as
π+ (Green curve), proton (red curve) and deuteron (blue curve). The position (m)
and standard deviation (σ) of each Gaussian fit is shown.

There is no guarantee that the common start strobe was triggered by electron. The

WC reconstruction does determine the charge of the particle, therefore the triggering

particle could be electron or π− for negatively charged particles, and positron, π+,

proton or deuteron for positively charged particles. To resolve this ambiguity, a

hypothesis testing algorithm was developed. For example, when the common strobe

is triggered by a negatively charged particle, it is first assumed to be an electron. The

mass of the rest of the particles detected are reconstructed. Each is compared to the

L ∼ 300 cm. It follows that the speed of flight β of the slower particle has an uncertainty of

displaystyleδβ =

√

(

δL
cT

)2
+
(

LδT
cT 2

)2 ≈
√
0.0352 + 0.0352 ≈ 0.05. With β ∼ 0.5 and p ∼ 0.4 GeV/c,

δm =

√

(

γpδβ

β2

)2

+

(

δp

βγ

)2

≈
√

0.092 + 0.042 ≈ 0.1 GeV/c. δβ is a dominating source in δm, and

δL and ∆t contribute to δβ with comparable significance.
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mass of known particles, and a χ2M is computed,

χ2M =
∑

i

(

Mi − M̃i

M̃i

)2

, (3.18)

where M̃i is the mass of known particles that is closest to the reconstructed mass

Mi. For instance, when Mi is 1.1 GeV/c2 for a positively charge track, M̃i will be

the proton mass which is the closest to Mi among the mass of positron, π+, proton

and deuteron. The hypothesis is tried next that the triggering particle was π−, χ2M

is computed for this hypothesis too. The hypothesis that resulted in the least χ2M is

adopted.

Monte Carlo simulations revealed that about 50% of the times in the production

channel H(e, e′π+), π+ reaches the time of flight earlier than the electron. When the

reconstruction and above hypothesis testing algorithm was applied to these simula-

tions, the program correctly identified that the start strobe was generated by a π+

over 60% of the time. The algorithm correctly identified about 50% of these events

that the other particle is an electron. 30% of the π+ were misidentified as protons,

while most of the electrons not correctly identified were recognized as π−. Overall,

30-40% of the e′π+ events were properly identified, even though the start strobe was

generated by the π+. Because H(e, π−π+)X events are highly unlikely, it is easy to

over ride the event identification in the analysis which will identify over 50% of the

e′π+ events. The performance with actual data is likely to be worse. However, the

particle identification algorithm described here is only meant for generic use. In the

physics analysis, kinematics, TOF ADC, Čerenkov signals could be used to obtain

more accurate and efficient event identifications.

The TOF ADC provides additional discrimination between heavy and minimum

ionizing particles. A generic π+ ID independent of reaction kinematics is shown in

Fig. 3-23.
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Figure 3-23: Generic π+ ID from detector responses. No reaction mechanism or
kinematic cuts were applied.

3.3.4 Čerenkov Detectors

The Čerenkov counters (CC) were thin layers of transparent Aerogel packaged in a

light-tight box with reflective inner surface. The boxes were mounted on the inner side

of the TOF detectors (see Figs. 3-14 and 3-17). Three boxes in each sector covered the

acceptance except for the most upstream four TOFs 13. Relativistic particles emitted

Čerenkov radiation when traveling faster than the speed of light in the medium.

The emitted photons were collected by PMTs mounted on the top and bottom of

the Čerenkov boxes. The CC boxes were used for the identification of relativistic

particles, primarily to allow discrimination between electrons and pions. The index

of refraction of the Aerogel for the most downstream CC box was 1.02 while the

others was 1.03. The Aerogel was 7 cm thick in the most downstream box and 5 cm

in the remaining boxes. The index of refraction was chosen to distinguish between

electrons and pions with momenta up to 700 MeV. Due to the ∼ 100 Gauss BLAST

fringe field, the PMTs were heavily shielded magnetically. A detailed description of

13A 4th box was installed in front of the four upstream TOFs. Simulations in 2002, and actual
data in early 2003, demonstrated that it stopped recoil deuterons before they reached the TOF,
resulting in a large loss of D(e, e′d) statistics. The two boxes, one in each sector, were removed in
July 2003.
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the BLAST Čerenkov detectors can be found in Ref. [84].

Since H(e, e′p) events can be selected from drift chamber and TOF information

with a high confidence level, the electrons in these events are used to measure the

efficiencies of the CC detectors. The efficiencies are found to be ∼ 85%. The efficiency

was not ideal and some of the CC’s displayed noisy behavior.

The main challenge in the D(e, e′d) event selection was the separation of deuterons

from protons while π−-d or π−-p background was very low. This can be successfully

achieved through a set of timing and kinematics cuts (Sec. 4.2). Therefore CC de-

tectors are not used in the analysis of elastic electron deuteron scattering, because

of the loss of statistical precisions caused by their low efficiencies, and the less ideal

reliability of the CC.

3.3.5 Drift Chambers

The drift chambers provided position information on the trajectory of charged par-

ticles. Combined with knowledge of the magnetic field, the charge, momentum and

geometric trajectory can be reconstructed. A detailed discussion of the design and

construction of the drift chambers can be found in Ref. [53]

The BLAST drift chambers (WC) were embedded in the horizontal openings be-

tween the magnet coils and were designed to maximize the acceptance within the

geometric constraints. Each sector contained three chambers constructed of one-piece

aluminum frames joined together with spacers into one single air-tight chamber. The

frames were pre-stressed to compensate for the deformation from the wire tension.

Compared to the layered-frame design, the single-chamber design reduced the amount

of material the particles have to penetrate by eliminating the windows between cham-

bers, thus reducing the energy loss and multiple scattering. The chambers were in a

planar design with each of the 6 faces a trapezoidal shape. Fig. 3-24 is a photograph

of one of the two chamber assemblies before installation into the supporting frame.

A mixture of 82.3% helium and 17.7% isobutane flowed through the chambers at

just above the atmospheric pressure. Charged particles traversing the gas stochas-

tically ionized the noble gas, leaving a trail of free electrons, which subsequently
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Figure 3-24: Photograph of one chamber assembly prior to integration into BLAST.
Each of the two assembly contains three chambers. Each chamber contains two
superlayers as explained in the text. When installed into the BLAST subframe,
Chamber 1 is the closest to the beam line, facing the target chamber. Particles
emerging from the target traverse chamber 1, 2 and 3 in that order.

“drifted” from their originating sites toward the designated readout wires under the

influence of an electric field produced by an arrangement of field wires. The electrons

accelerate for an average distance dictated by the mean free path (∼ 1µm) and de-

celerated by collisions with gas molecules. The net effect is thus an approximately

constant drift velocity of ∼ 20 µm/ns. By measuring the drifting time, the position of

the initial ionization could be determined. The position resolution was worse at longer

drift distance due to the diffusion of ionized electrons in the gas. The readout wire

was 25 µm thick. The electric field near the wire behaves as ∼ 1/r. The field close to

the wires was strong enough to cause avalanche ionization, which served as an ampli-

fication mechanism. The strong field, however, does increase the drift velocity which

causes a non-linearity in the drift time to drift distance relationship. As a result, the

position resolution was reduced in the region close to the wires. The isobutane in

the mixture served as the quenching gas, absorbing the energetic photons caused by

recombinations in the avalanche region. These photons, left unchecked, would cause

secondary ionizations resulting in constant space electric discharges.

A coordinate system is defined for each of the six chambers where xw is in the
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horizontal plane pointing toward the upstream direction at an angle of α = 163.5◦

with respect to the beam direction, yw points vertically up in the left sector and down

in the right sector and zw forms a right-hand system with yw and xw. For all the

chambers, zw points away from the target.

Each chamber contained two “superlayers”, each of which contained three “layers”

of sense wires. Each layer is a plane, perpendicular to zw and parallel to the xw-yw

plane, within which were the wires strung in an up-down orientation. The wires in

the inner superlayers were rotated about the zw direction by a stereo angle of +5◦

and those in the outer superlayers by −5◦. Fig. 3-25 is a view of the outer most

chamber from the beam line along the zw direction, the sense wires and the ±5◦

stereo angles are shown. The layers were shifted by ±0.5 mm in xw to resolve the

Left/Right ambiguities. The distance between layers in each superlayer was 1 cm,

and the middle layer of the two superlayers in each chamber were separated by 6 cm.

Each superlayer was further divided into “cells”. The numbers of cells in the layers

were, from inner most outward, 18, 19, 26, 27, 34, 35.
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Figure 3-25: A view of the 3rd chamber along zw direction. The wires and the stereo
angles are illustrated.

A cell is a rectangular array of thirty-nine wires with foot-print of 4.0cm ×7.8cm
in the xw-zw plan e as shown in Fig. 3-26. The wires in a cell fall into one of three

functional categories: sense, field and guard. High voltages (HV) were applied to

87



the field wires creating an electric gradient toward the sense wires. The HV on the

guard wires are optimized to shape the field between the sense wires. The sense wires

were set at 3850 V. This arrangement produces a electric field, as shown in Fig. 3-27,

that resembles two oppositely directed “jets” for each sense wire. In the absence

of magnetic field, the ionized electrons drift along the electric field line. With the

presence of BLAST toroidal magnetic field, the drift lines are distorted. The effect of

BLAST magnetic field was studied with a GARFIELD simulation and is included in

Fig. 3-27.
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Figure 3-26: Overhead view of a drift cell in BLAST. The sense wire stagger is evident.
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Figure 3-27: Drift lines in a drift cell without (left) and with (right) BLAST magnetic
field.

An isochrone connects points of equal drift time along the drift lines. When a

particle passes through the vicinity of a wire, the drift time measured is the drift

time of the isochrone that is tangential to the trajectory. There are no isochrones in
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the jet-style cell tangential to tracks with an impact angle greater than 60◦, leading

to ambiguity in the determination of drift time. This affects the resolution of forward

electron track reconstruction 14.

The sense wire signals were preamplified and discriminated in custom made read-

out cards mounted on the outside of chamber frame, and were digitized by LeCroy

1877 FASTBUS TDC modules. The TDC modules were started by the leading edge

of the wire signal and stopped by the common stop strobe generated by the delayed

triggering TOF signal. Fig. 3-28 illustrates the sequence of timing events leading to

a TDC value from a sense wire.

t
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t 1
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t 3drift
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∆
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Target

Figure 3-28: Schematic illustrating the meaning of drift chamber TDC.

A charged particle ionizes the chamber gas at time t1. The ionization electron

drifts toward a wire close by and produces a signal at t3. The charged particle travels

on at velocity v across a path length of L from the ionization site, and hit a TOF

at t2 = t1 + L/v. The stop strobe is generated by the TOF hit and arrives at time

t2 + ∆TOF where ∆TOF is the electronics delay for the common step. It is easy to

see from the figure that the drift chamber TDC measures twc = t2 +∆TOF − t3. The

14In comparison, the hexagon cells featured in CLAS drift chambers in Hall B of JLab do not
have this limitation [85].
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drift time tdrift can then be calculated as,

tdrift = t3 − t1 = ∆TOF + L/v − twc = t0 − twc, (3.19)

where the drift chamber time offset t0 is defined as ∆TOF + L/v. The TOF delays

∆TOF are adjusted prior to the installation of the drift chamber with a reference

start counter so that t0 = ∆TOF +L/v is constant regardless of the TOF paddle that

generated the common stop strobe (Sec. 3.3.2), as long as the particle travels at close

to speed of light, β =
v

c
= 1. Since the track length L0 from the target to a given

TOF is approximately constant, t0 can be written as t0 = ∆TOF +L0/v−D/v where

D is the distance from target to the cell. This relationship is used in reconstruction

software to correct for the drift times for slow particles (Eq. 3.22).

A typical TDC spectrum is shown in Fig. 3-29. The right edge of the plateau is

TDC signals generated from ionization sites close to the wire, where the drift times

are short, tdrift ≈ 0 and twc ≈ t0. The sharp spike is due to the strong nonlinearity

in the field close to the wires. The left edge corresponds to the cell boundary and is

not as well defined due to the diffusion of the ionized electrons.
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Figure 3-29: Drift chamber TDC spectrum.

In practice the distance d along the xw direction between the track and the wire is
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calculated from the “time-to-distance” (T2D) conversion functions. The conversion

function depends on the wires, denoted by the cell number c and the layer number

l = 0, 1, 2, and the side of the wire, s = left, right, to which the track traversed,

x− xl,c = dl,c,s (tdrift) = dl,c,s(t0 − twc), (3.20)

where tdrift is the drift time and twc is the time measured by drift chamber TDC.

Fig. 3-30 illustrate the conversion where a track and the Garfield simulated drift lines

are projected onto the horizontal plane at yw = 0. The track passes the cell at an

impact angle θimpact = 90◦ − θtrk and is tangent to the t = 100 ns isochrone. The

distance from the wire to the tangent point d0 is projected along the track to the wire

plane to obtain the distance d which is returned by the time-to-distance function.

Due to the distribution of the BLAST toroidal field and the asymmetry in drift lines

it caused in the two halves of the cell, the time-to-distance relationships for each

wire and on the two sides of a wire are generally different. The distance d depends

on two other variables besides the drift chamber TDC. The BLAST magnetic field

has a different direction and strength within the same cell at different heights in the

yw direction, therefore d is a function of the yw coordinate at which the tracks pass

the cell. Also, the projection from the tangent point to the wire plane is dependent

on the impact angle of the track. In Fig. 3-30, the drift of ionized electrons inside

the chamber gas was modeled independent of data using a Garfield simulation. The

electric field inside the cell was calculated from the voltages on the wires, the BLAST

toroidal field was then superimposed, and the ion velocity at each point in the cell

was calculated using the fields and the gas mixture property. Isochrone contours were

calculated by numerical integration of the ion velocity. The distance d can then be

calculated geometrically for tracks with a given impact angle and tangent to each

isochrone.

Across the distance of 2 cm between the first and last layer in a cell, the particle

trajectories are essentially straight lines. The three sense wires in a cell determine

the projection of the straight line onto the Y = 0 (beam height) horizontal plane by
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Figure 3-30: Illustration of the Garfield simulation of the time-to-distance function.
A track with incident angle θtrk = 90◦ − θimpact is shown tangent to the t = 100 ns
isochrone along with the distance d returned by the T2D function.

sampling three points along the track. The middle sense wire is staggered by 1 mm

upstream with respect to the other two, thereby eliminating the left-right ambiguity

which occurs due to the lack of directional information recovered from the TDC. The

left-right ambiguity and the stagger are illustrated in Fig. 3-31.

x

z

x

z

Figure 3-31: Track reconstruction without any sense wire stagger (left) and with ±0.5
mm sense wire stagger (right). Without a stagger, the side of the traversing particle
cannot be determined. With a stagger, the three hit distances form a straight line
only if the correct side is chosen.
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3.3.6 Drift Chamber Reconstruction

The reconstruction of particle trajectory is performed in two stages: track linking

and track fitting. Track linking contains four steps: hits, stubs, segments and tracks.

Track fitting is also done in stages. The algorithms are outlined in this section. An

overview of the reconstruction software package is give in Ref. [83].

The linking stages are illustrated in Fig. 3-32. First the “hits” are reconstructed

from TDCs with the time-to-distance conversion functions. The plane parallel to the

wires with the minimal sum of square distances to the hits is called a “stub”. The

two stub planes in the two superlayers within a chamber intersect and determine a

line “segment”. The ±5◦ stereo angles in the two superlayers guarantee the existence

of segments. The mid-points of the three segments provide 6 independent coordinate

positions x1,2,3 and y1,2,3, while z1,2,3 are constraint by the planar drift chamber ge-

ometry.
yi
xi
, i = 1, 2, 3 are used to determine the azimuthal angle φ of the trajectory.

The toroidal nature of the BLAST magnetic field guarantees that the geometric track

of the particle lies in the plane expanded by the beam line and its initial momentum,

and if the magnetic field is approximately constant, the trajectory of a charged parti-

cle is a circle which can be determined by three degrees of freedom x1, x2 and x3. The

circle, known as a “track”, is parameterized by five variables (p, θ, φ, z; q), where p is

the momentum obtained from the curvature of the circle and the average magnetic

field along the circle, z is the vertex, θ and φ are the polar and azimuthal direction

of the momentum at the vertex and q = ±1 is the charge of the track deduced from

the direction in which the center of the circle lies relative to the track.

The tracks found in the link stage are fed, as initial points, through an iterative

Newton-Rhapson fitting program [83]. The Newton-Rhapson method searches, in the

parameter space (p, θ, φ, z), for the root of the equation,

x(t)− xh(p, θ, φ, z; q) = 0, (3.21)

where x(t) = (x1(t1), x
2(t2), ...) is up to an 18-dimension vector whose components

are the positions of all the wire hits measured from the the drift chamber TDC,
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(a) Time-to-distance function calculates
the perpendicular distance of the track

from the wire

(b) Stub-finder determines to which side
of each wire the track passed. 5 different
cases of the 8 possibilities are shown

(c) In each chamber, the intersection of
two stub planes forms a line segment

(d) The line segments are linked to form
the most likely tracks

Figure 3-32: Steps of track reconstruction from hits in the drift chambers.
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and xh(p, θ, φ, z; q) is the vector whose components are the positions where a track

with charge q, initial momentum p = (p, θ, φ) originating from vertex x = (0, 0, z)

would intersect the wire planes. xh(p, θ, φ, z; q) is found by numerically integrating

the equation of motion of a charged particle in the magnetic field from the vertex

outward and locating the intersection with each of the 18 wire planes. The x and y

coordinates of the vertex ars fixed at 0, as the beam location is known much better

than the tracking resolution. Compared to conventional χ2 minimization methods,

the root finding algorithm is more robust against local minima by preserving the

directional information.

Track fitting is performed in two stages. First, all particles are treated as ultra-

relativistic due to lack of timing information. Once a solution is found, the trajectory

is extended according to the equation of motion to outer detectors. Hits in TOF,

CC, NC are linked to drift chamber tracks according to geometric intersections of the

tracks and the detectors. The absolute time of flight and the velocity of the particle

can then be resolved (Sec. 3.3.2). The L/v term in Eq. 3.19 is corrected and the

assumption that the particle travels at speed of light is removed by correcting the

drift chamber TDC offset t0,

t0 → t0 −
D

c
(1− 1

β
). (3.22)

The 3(chambers)× 2(superlayers)× 3(layers) configuration provides minimally

sufficient information for the unambiguous identification of a track. However, multiple

hits and background noise produce unresolved multiplicities in terms of the number

of stubs in a cell. Poor calibrations lead to realized intrinsic position resolutions that

fall short of the 120-200 µm design specification. While the 1 mm stagger is 5 times

the nominal resolution, it reduces to only a 2σ distance when the realized resolution

is 500 µm. Therefore poor resolution gives rise to increased multiplicity also. In order

to reduce the combinatorics, only the best candidates are kept at each stage in the

track linking. In the track fitting stage, candidates with bad χ2 or slow convergence

are discarded every few iterations.
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Hits may be missing due to inefficiencies. When only two wires respond to a

track, there is a 4-fold multiplicity in the cell, which usually leads to two segments

combined with the stub in the neighboring superlayer. When only one wire was hit,

a continuum of stubs are possible due to the lack of constraint in the orientation. A

segment can be constructed by assuming that the stub is perpendicular to the wire

plane. When all three wires in a cell failed to trigger, the segment is constructed by the

intersection of the stub in the other superlayer and the reaction plane determined by

segments in other chambers. The 1-hit and 0-hit situations lead to reduced accuracy

in the segments, however, the errors are corrected in the track fitting stage, where

the Newton-Rhapson fitter directly utilizes hit information.

3.3.7 Drift Chamber Calibration and Performance

The calibration of the drift chamber has several parts: the calibration of the time offset

t0 in Eq. 3.19; the precise determination of the position of each wire xl,c in Eq. 3.20;

and the calibration of the time-to-distance conversion function dl,c,s in Eq. 3.20.

The timing offset t0 is calibrated for each wire using its TDC spectrum. Noise is

removed by selecting only hits linked to tracks and t0 is taken as the location where

the right edge falls to zero (see Fig. 3-33). The calibration is good to within ±2 ns,

corresponding to ∼ 40 µm in position resolution which is much smaller than the

resolution arising from the time to distance conversion. Any change in t0 over time

is monitored for each sense wire.

The center position of each wire feedthrough is measured by the manufacturer to

within 10 µm, but the feedthroughs have an inner diameter of 250 µm, constraining

the wire position, in the worst case, to within ±125 µm. The sense wires are strung

with 50 g tension to resist deformation under electro-magnetic fields. The positions

of the wires are further calibrated with data and are believed to be known to within

±50 µm [86].

An empirical method of iterative relaxation was developed to calibrate the drift

chamber time-to-distance conversion functions. The iterative relaxation method draws

from the successful experience with the CLAS drift chambers in Hall B of JLab [85].
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Figure 3-33: Calibration of drift chamber TDC offsets t0 for left sector, chamber #0,
superlayer #0, layer #1 and cell #9. The green line is a fit to the plateau, and the
red line marks the t0 obtained.

The Garfield simulation was used as a starting point. Tracks are reconstructed, and

those that converged with χ2 values and traced back to the target are used. The

distances dtrk from the tracks to the wires are fit to 9th order polynomials of the

drift chamber TDC. The polynomials are connected continuously in both the 0th

and 1st derivatives to linear functions fit to distance over the TDC in the range

2500 < t0 − t < 4000 to avoid numerical instability in the polynomial at large TDC

values. Reconstruction is reperformed with the updated T2D functions, and the pro-

cedure was iteratively repeated until the T2D functions converge. 270 deuterium

target runs taken during the summer of 2004 were used to calibrate the 1908 T2D

polynomials 15. Electro-disintegration of the deuteron offers wider coverage of the

drift chamber than the very narrowly defined elastic kinematics.

Fig. 3-34 shows the distribution of distances dtrk as a function of TDC channel

on both sides of one of the wires. The calibrated time to distance (T2D) functions

are superimposed. The right panel of the figure shows, as a function of the TDC, the

15The very first few cells of each layer failed to converge due to poor signal to noise ratio.
These cells are dominated by tracks with large impact angle which are not tangential to any of
the isochrones. Therefore the Garfield simulated T2D function does not present a valid starting
point for the iterative method. The original Garfield simulated T2D relations were used for these
cells.
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distance with a linear function subtracted: d(t0 − twc) − k × (t0 − twc). This figure

highlights the nonlinearity of the T2D conversion function even at medium to large

drift time (t0 − twc > 500 ch). This nonlinearity could be due to variations of drift

velocity along the drift lines due to uneven distribution of the fields, a nonlinearity

in the TDC module, etc. The empirical polynomial fit is capable of accommodating

these nonlinearities as well as small errors in t0 and wire position xl,c.
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Figure 3-34: Calibration of drift chamber time to distance (T2D) conversion function.
The red dashed curves are the calibrated T2D functions. In the right figure, the
distance minus a linear function, d(t0 − twc) − k × (t0 − twc), is shown as a function
of t0 − twc. The nonlinearity at medium and large drift time is clearly shown on the
right.

Fig. 3-35 is a histogram of the typical residual of δd = dtrk − dl,c,s(t) in the range

(1500 ch < t0 − twc < 2000 ch) which excludes the highly nonlinear regions. The

intrinsic position resolution measured by the standard deviation of the residual is

typically ∼ 600 µm 16. The resolution close to and far from the wire is lower due to

nonlinearities in the field and the diffusion of the ionized electrons 17.

16This falls short of the 200 µm drift chamber design specification. The lack of redundancy in
the BLAST drift chamber presents special difficulties in obtaining precise calibrations. The three
chambers are more than 40 cm away from each other while each chamber is only 8 cm in depth.
The chambers therefore exerts little constraint on each other. The 3-layer cell has no redundancy so
that individual wires can not be calibrated independently. The hexagonal cell design in CLAS drift
chambers has more redundancy and more close neighboring cells.

17The wires in BLAST drift chambers have 4 cm pitch compare to the 2 cm wire pitch in CLAS
drift chambers.
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Figure 3-35: Drift chamber resolution with T2D function. The residual for left sector,
chamber #1, superlayer #0, layer #1, cell #20, left side is shown. The center portion
fits to a normal distribution with σ = 250µm, however, there are clearly higher tails
than a normal distribution, which give rise to a standard deviation of σ ∼ 600µm.

Tracking resolution is measured by the over-determined kinematics in elastic

H(e, e′p) and D(e, e′d) reactions. For example, the reconstructed electron momen-

tum pe is compared to the momentum value calculated from the reconstructed θe, and

the standard deviation is used to measure the tracking resolution. Using the elastic

electron-proton scattering events, the following resolution measures are extracted:

δpe
= pe − pe(θe),

δθp
= θp − θp(θe),

δpp
= pp − pp(θe), (3.23)

δφ = φright − φleft − 180◦,

δz = ze − zp.

Fig. 3-36 shows the comparison of reconstructed θp and θp(θe) and the angular resolu-

tion measured. On the right panel, the distribution of δθp
is fit to a Gaussian and the

width of which is use to measure the resolution. This estimation is dominated by low

Q2 ep-elastic events while the actual tracking resolutions depend on the momentum of
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the scattered particles; therefore this procedure provides only a rough estimate of the

resolutions. For typical electrons (pe ≈ 0.8 GeV/c) and protons (pp ≈ 0.3 GeV/c),

the resolutions are determined to be,

σpe
∼ 25 MeV, σθp

∼ 0.5 ◦, σpp
∼ 20 MeV, σφ ∼ 0.6 ◦, σz ∼ 0.9 cm. (3.24)

The resolution in invariant mass is typically σW ∼ 30 MeV and the beam energy is re-
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Figure 3-36: Angular tracking resolution for electrons and protons in the left and
right sectors from elastic scattering from a hydrogen target. The red curve on the
left panel is the proton scattering angle, θp(θe) calculated from the electron scattering
angle according to ideal ep-elastic kinematics. The residual θp − θp(θe) is shown in
the right panel and fit to a Gaussian (the red curve).

constructed typically with σE0
∼ 26 MeV. The resolutions extracted with this method

are in fact functions of Q2. In general, tracking resolutions depend on the particle

species, the sector, and the region where the tracks passed. The same method can

be applied to the D(e, e′d) reaction, which was used to monitor tracking performance

during deuterium target runs.

The reduced χ2 of each fitted track is defined as

χ2 =

∑N
1 (x

i
trk − xihit)2

(N − 4)δd
, (3.25)

where N is the number of hits the track was reconstructed from, δd is wire resolution,
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xitrk is the position where the track crosses the ith wire plane and xihit is the position

determined from the wire TDC. The degrees of freedom are N − 4 because of the

four tracking parameters. The average χ2 is 1 with δd ≈ 600µm, consistent with the

findings from the T2D calibration (Fig. 3-35).

Besides the position resolution in drift chambers, multiple scattering by the par-

ticle from the atoms in the media it traversed can also affect the tracking resolution.

The energy loss by the particle causes the curvature to increase along the path, which

is not corrected for in the tracking algorithm. The BLAST GEANT simulation pack-

age “blastmc” is used to study the impact of various factors. Resolutions and physical

processes along the particle trajectory are simulated with GEANT, and the simulated

drift chamber hits are reconstructed with the same software package as used for real

data. The same resolution measures are extracted. The results are listed in Tab. 3.3.

Energy loss does not have a significant effect on resolutions while multiple scattering

alone limits the angular resolutions to about 0.5◦, vertex resolution to ∼ 1 cm and

momentum resolutions to not better than 10 MeV. The realized angular and vertex

resolutions are close to the limit imposed by multiple scattering. The large impact

angle on drift chamber cells for the forward angle electrons significantly limits their

reconstruction resolution.

The efficiencies of the wires were determined in a study in which a track was

deemed to have traversed the cell whenever two of the three wires in a cell were

hit 18. The efficiency of the third wire was then determined as the fraction of time

that a hit was in fact produced. The efficiency of most wires is found to be greater

than 95%. The reconstructed tracks have an average hit number of 17, consistent

with the 95% figure.

The drift chamber tracking efficiency was studied, in the dissertation of Dr. Chris

Crawford, by selecting a elastic ep event sample from the TOF scintillator cuts [83].

The efficiency measured in this manner is a convolution of wire efficiencies, efficiencies

of track linking and fitting algorithms, and the robustness of tracking algorithms

18When the impact angle is large, the 3rd wire could in fact be in the neighboring cell. Such cases
are excluded from the total sample in the study.
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LOSS MULS δx(t) δx(θimpact) δpe
δpp

δθp
δφ δz

(×200 µm) (MeV) (MeV) (◦) (◦) (cm)
off off 0 off 5 5 0.1 0.2 0.5
off off 1 off 6 6 0.2 0.3 0.6
on off 1 off 6 6 0.2 0.3 0.6
off on 0 off 15 10 0.4 0.5 0.9
on on 1 off 15 10 0.5 0.5 1.0
on on 2.5 off 15 15 0.5 0.5 1.0
on on 2.5 on 20 15 0.5 0.5 1.1

Table 3.3: Monte Carlo study on contributions to tracking resolution. LOSS stands for
energy loss and MULS stands for multiple scattering simulation, δx(t) is the standard
chamber position resolution simulated for each wire, δx(θimpact) simulates worsening
of resolution caused by large impact angles. The resolution measures are same as
defined in Eqs. 3.23, but applied on reconstructed Monte Carlo data. The difference
between the 3rd and 2nd rows shows that energy loss does not affect tracking resolution
significantly. The difference between the 4th and the 1st demonstrates the big impact
of multiple scattering. Realized angular and vertex resolutions are close to the limit
imposed by multiple scattering (the 4th row).

under event selection rules. The non-biased event base is constructed with timing and

coplanarity cuts in the TOF along with single arm drift chamber tracks which conform

to H(e, e′p) kinematics. The percentage of missed tracks was tabulated as a function

of Q2. Progressive cuts on resolutions were applied to study the robustness. The

four track parameters (p, θ, φ, z) are used along with invariant mass W . The tracking

efficiency, which includes both detector efficiency and reconstruction robustness, is

shown in Fig. 3-37. Track linking is highly efficient, as a result of the highly efficient

wire response. The Newton-Rhapson method converges for most of the tracks found in

the linking stage. However, the subsequent event selection cuts lead to significantly

reduced efficiency, which points to poor resolutions and mis-reconstructions. The

overall efficiency after event selection is determined by comparing the yields observed

to the yields predicted by Monte Carlo simulations for a given target density. For

reactions requiring double coincidence of drift chamber tracks, the Monte Carlo study

indicates an efficiency of 50-60%, consistent with, for example, the convolution of

“Left Proton” and “Right Electron” efficiencies in Fig. 3-37.
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Figure 3-37: Drift chamber tracking efficiency for electrons and protons in the left and
right sectors. Figure taken from Ref. [83]. The curves, listed in the same order in the
legend as they appear in the plot, correspond to different cuts on tracking qualities
(10-σ, 5-σ in invariant mass W , etc. as indicated in the lower left panel). Ellipse cuts
further eliminate the corners of the rectangular cuts. The five parameters are p, θ, φ,
z and invariant mass W .
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3.4 Electronics

3.4.1 Trigger

The trigger system was developed in conjunction with JLab Hall A. Signals from the

TOF, NC and CC detectors were sent through a passive analog splitter. One branch,

called the prompt, was sent to discriminators, while the other, delayed by 500 ns was

sent to the ADCs. After discrimination, the prompt signals were sent to TDCs after a

delay, and a sector LeCroy Memory Lookup Unit (MLU). The MLU was programmed

to demand coincidence between the two PMTs in each TOF, etc. The outputs of the

two sector MLUs were combined in a cross MLU (XMLU), where the coincidence

among multiple detectors and across the two sectors was demanded. Fig. 3-38 is a

schematic of the electronic components. The physics trigger settings used during the

experiment are tabulated in Ref. [83].

Analysis of earlier detector performance revealed that over 90% of the triggers

failed to reconstruct into drift chamber tracks. The source of such events was pre-

sumed to be upstream electron-positron showers and gamma rays which left sporadic

trails in the chambers. The addition of a collimator into the beam line to protect the

target cell walls aggravated the noise problem and increased the detector dead time

to a level of ∼ 40%. In order to reduce the number of trackless events, a second-level

trigger was instrumented, in December of 2003, to demand at least one hit in each of

the three drift chamber in one sector. The second level trigger reduced the detector

dead time to below 5% and reduced the trackless events to less than 10% of the total

number of triggers.

The trigger supervisor (TS) provided trigger distributions, gates and starts to

ADC and TDC modules, the common stop to the drift chamber TDC, event syn-

chronizations, etc. The TS was developed by JLab and is controlled by the CODA

software.
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Figure 3-38: A schematic of the trigger logic. Only one circuit is shown for each
detector, and only the left sector is shown. The logic from the left sector MLU and
right sector MLU are combined in the cross MLU to form the final trigger processed
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3.4.2 Data Acquisition

BLAST used the CEBAF Online Data Acquisition (CODA) system from JLab. Two

FASTBUS crates, one for each sector, digitized the data. Readout controllers (ROC)

read the data through the Struck FASTBUS Interface (FSI) and communicated data

fragments to a Linux host computer via local DAQ Ethernet. The Linux host ran the

CODA graphical interface RunControl and the main CODA processes. The Event

Builder (EB) assembled fragments into a raw CODA event. Event Transport (ET)

buffered the event, merged events from input pipes, such as EPICS, scalers and the

Compton controller, and responded to queries from output pipes such as online mon-

itors. The Event Recorder (ER) wrote data to disk.

The Experimental Physics and Industrial Control System (EPICS) is used to

control and monitor slowly varying settings and parameters such as high voltages,

beam current, vacuum gauges, and temperatures. EPICS variables were recorded at

a frequency of 1 Hz into the CODA data stream. Scaler readouts were also recorded

into the CODA stream every second. All events were time-stamped by the ROCs

and the synchronization was better than 10 ms. Physics event must be bracketed

by EPICS and scaler events in order to be valid, as important run parameters such

as beam current, and target and beam helicity states, are carried by scalers. Alarm

systems were implemented to prompt operators when the EPICS or scaler stream was

disrupted.

3.5 Monte Carlo Package

A C++ software package, DGen, was developed for BLAST physics simulations. DGen

incorporates theoretical calculations for the electron scattering reactions studied with

BLAST. Cross sections and spin dependent observables are computed, events are

generated accordingly and fed into the BLAST GEANT package, known as blastmc.

The GEANT package propagates the particles in the BLAST magnetic field and sim-

ulates the detector responses and physical processes such as energy loss and multiple

scattering. Several physics channels are implemented in DGen, including D(e, e′d),
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deuteron electro-disintegration 19, H(e, e′p) 20, and pion production from the nucle-

ons 21. Polarized observables in ep-elastic and ed-elastic reactions with radiative

corrections are implemented through a translated version of MASCARAD [87] from

FORTRAN 22. Multiple channels can be mixed in one simulation, which proved useful

in the study of contamination caused by elastic reactions in the inclusive deuteron

electro-disintegration channel.

DGen is a quasi-Monte Carlo event generator. It uses the Sobol low-discrepancy

sequence [88], which is a deterministic sequence sampling the unit interval in N-

dimensional space more “uniformly” than standard computer generated pseudo-random

numbers [89]. It is proven that for Monte Carlo sampling in a s-dimensional space,

the mean value converges to the true mean at a rate of B =
ζ × logs−1N

N
, where ζ is a

constant related to the quality of the sequence, i.e., the degree of “discrepancy”. This

error bound is deterministic, which means the difference between any quasi-Monte

Carlo and the true value is smaller than this bound while the error bound in standard

Monte Carlo methods is the standard deviation which is statistical.

Several operating modes are implemented in DGen. In a stochastic simulation,

events are distributed according to the cross section. DGen automatically distributes

events across spin states and reaction channels with weights determined by the total

cross sections of the various channels. Analysis programs developed to treat actual

data can be applied almost as is. It can be shown that the error in asymmetries is

bounded by the error bound B of the low-discrepancy sequence [89].

DGen can also be used as a quasi-Monte Carlo integrator where the generated

events are taken as the weighting in the integration,

∫

Ω

f(x)w(x)dx =
N
∑

i

f(xi), (3.26)

with xi, i = 1, 2, ..., N distributed as w(x). The error bound of the integral is σf ×B,

19Courtesy of Dr. Hartmorth Arenhövel [43]
20Courtesy of Ben Clasie, Chris Crawford and Jason Seely for the underlying software
21Courtesy of MAINZ collaboration for the MAID source codes.
22Courtesy of Dr. Afanasev from JLAB for MASCARAD source code and Vitaliy Ziskin for the

adaptation into C++.
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where σf is the standard deviation of the function f and B is the error bound of

the sequence. Spin asymmetry observables are bounded by ±1, hence σf within a

typical bin in the analysis is much smaller than 1. The Monte Carlo integrator mode

takes advantage of the accelerated convergence, albeit special analysis code must be

prepared for the generated data.

The importance sampling technique [88] was also used with DGen. When the

region of phase space under consideration has a very small cross section, very few

events would fall into that region, leading to poor accuracy in Monte Carlo results.

The importance sampling method samples the phase space uniformly and restores

the physical distribution by assigning, after generation, an appropriate weight pro-

portionally for each event. Analogous to Eq. 3.26, the importance sampling method

can be expressed as,
∫

Ω

f(x)w(x)dx =
N
∑

i

f(xi)w(xi), (3.27)

where xi, i = 1, 2, ..., N are uniformly distributed.
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Chapter 4

Data Analysis

The BLAST detector complex and the ABS target were commissioned from June 2002

to June 2004 when optimal detector and target performances were achieved. Data

for this experiment were taken during two periods using the same 60 cm target cell.

Key parameters of the two periods are listed in Tab. 4.1 1.

Run 1 Run 2

start date 2004/07/02 2005/03/17
end data 2004/10/18 2005/05/31
beam charge q 370 kC 560 kC
ave. beam current I 100 mA 180 mA
target thickness ρ 6×1013 cm−2 6×1013 cm−2

luminosity L 4×1031 cm−2 sec−1 7×1031 cm−2 sec−1

int. luminosity
∫

dtL 139 pb−1 236 pb−1

tensor pol. Pzz 0.683 0.563
pol. angle θS 31.7◦ 47.7◦

Table 4.1: Beam, target, and spectrometer conditions for the two data-taking periods
of BLAST with the ABS D2 target.

The main differences between the two periods are: 1) The 2005 runs had higher

average beam current as the performance of the ring and the detectors were better

understood; 2) The 2005 runs had lower polarization (Sec. 3.2.2); 3) The 2004 runs

1There are another 8 series of runs under various conditions. The total charge in those runs is
230 kC and the average tensor polarization was about 0.4. The cumulative Figure of Merit (FOM),
measured by the product of cumulated charge and polarization Q×P 2

zz, in these runs is about 10%
that of the data used in this work. As a result, these runs are not used in this work
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had the target spin angle held at 32◦ to the left of the beam, which is optimal

for the high Q2 T20 and the GN
E measurement from D(e, e′n)p channel [54], while

the 2005 runs had the spin angle set at 47◦ on the left side of the beam, which

is optimal for low Q2 T20 measurement. Production data with the hydrogen target

were taken in between. With the target polarization pointing to the left of the beam,

the 3-momentum transfer is approximately parallel (perpendicular) to the deuteron

spin when the electrons scatter into the right (left) sector. Therefore the kinematic

configurations are referred to as parallel and perpendicular kinematics respectively.

4.1 ed-elastic Monte Carlo

Monte Carlo simulations are performed to help understanding the apparatus and the

data. Events distributed according to the ed-elastic cross section were generated and

passed to the dedicated GEANT package [53] which simulates the physical processes,

such as energy loss and multiple scattering in the BLAST detector system and de-

tector signals. The GEANT simulated detector signals were then processed by the

same reconstruction package (Sec. 3.3.6) [83] used for actual data. The reconstructed

events, therefore, have the BLAST simulated acceptance and detector resolutions

included.

The target polarizations are assumed to be 100%, i.e., P+
zz = 1 and P−

zz = −2 for

the simulations. The reconstructed Monte Carlo data were analyzed to obtain the

“Monte Carlo asymmetry”:

AMC =
√
2

N+
MC −N−

MC

P+
zzN

−
MC − P−

zzN
+
MC

,

where, N+,−
MC is the number of events generated and reconstructed in the tensor

+, − states respectively. Polarizations less than 100% lead to a multiplicative

scaling factor on the asymmetry, A(Pzz < 100%) = Pzz × AMC ; therefore the ac-

tual target polarization can be measured by comparing the experimental asymme-

try to the Monte Carlo, Pzz =
Araw

AMC

, with Araw representing the measured asymme-
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try (Secs. 4.3.2 and 4.3.3). To facilitate the comparison to experimental data, the

Monte Carlo asymmetries at Q2 < 0.35 (GeV/c)2 are fit to polynomials of the form,

AMC(Q
2) = a1Q

2+a2Q
4+a3Q

6, which conforms to the constraint that A(Q2 = 0) = 0.

Fig. 4-1 shows the Monte Carlo asymmetries in the parallel and perpendicular kine-

matics, and the fit to the polynomials. Simulations assuming spin angles between

28◦ and 50◦ with 1◦ separation were performed. The results are compared to data to

measure the actual spin angle (Sec. 4.3.3).
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Figure 4-1: The Monte Carlo asymmetries AMC with spin angle 32◦. The polynomial
fit AMC(Q

2) = a1Q
2 + a2Q

4 + a3Q
6 is also shown.

Special simulations were performed where different degree of polarization were as-

signed to different target states. These simulations were used to study the systematic

errors described in Sec. 4.5.2.

Many deuteron models are implemented and simulated. For the determination

of tensor polarization Pzz and spin angle θS, Abbott’s parameterization III [61]

(Sec. 2.3.3) is used, while the other models are simulated for the purpose of comparison

and study of model dependence and theoretical error. The choice of parameterization

III is discussed in detail in Sec. 4.6.2.
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4.2 Event Selection

Robust yet efficient event selection rules are important to establish a clean e-d elastic

event sample. The elastic electron-deuteron cross section is very small compared to

the electro-disintegration of the deuteron. The observed D(e, e′p)n rate was almost

40 times the elastic rate. Some preliminary requirements were established to ensure

the quality of the reconstruction: 1) One wire chamber track in each sector, one with

positive charge and the other negative; 2) Each track must be reconstructed from no

less than 12 wire chamber hits, and converge to a reduced χ2 less than 100; 3) Each

track must link to a TOF hit to ensure timing-based particle identification (PID);

4) The mean z vertex of the two tracks must be within −20 cm to 20 cm where the

target holding field is strong, and the target spin angle θS(z) is within ±10◦ from

the average spin angle. A set of cuts based on information provided by the time-of-

flight (TOF) scintillators and drift chambers (WC) are applied in addition to these

preliminary requirements.

4.2.1 Elastic TOF Cuts

The TOF cuts are based on the timing, coplanarity and energy deposit of particles

in the scintillators. An ed-elastic event triggers one TOF in each sector. The timing

cuts are created for 142 out of the 256 (16 on the left × 16 on the right) paddle

combinations which are shown in Fig. 4-2. A Monte Carlo study showed that the

remaining 114 left-right combinations have absolutely no elastic events in them. A

typical timing spectrum has two peaks. Deuterons, being twice as heavy as protons,

are associated with the later peak. The later timing peak survives kinematic cuts

demanding the reconstructed drift chamber tracks lie close to the ed-elastic kinematic

ridge. This is deemed a strong confirmation of the identity of the deuteron timing

peak. For paddles with sufficient elastic statistics, the deuteron timing peaks were fit

to Gaussian distributions and 5-σ cuts were used. For paddles whose statistics were

too low to fit for Gaussians, the cuts were positioned to exclude the proton timing

peaks. The cuts are marked by green vertical lines in Fig. 4-2. The typical width of
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Figure 4-2: An illustration of the TOF timing cuts. Timing delays between a posi-
tively charged particle in coincidence with an electron are shown for each combina-
tion of the 16 TOFs in the left sector (vertical) and the 16 TOFs in the right sector
(horizontal). The shaded combinations are forbidden by elastic kinematics. The com-
bination of left #15 and right #1 is shown in the inset. The blue curve shows all the
events, protons (peak at 10 ns and deuterons (peak at 30 ns). The purple curve shows
the events after WC kinematics cuts which are discussed in Sec. 4.2.2. The proton
peak at 10 ns is reduced by a factor of 2.5 in its peak value, while the deuteron peak
at 30 ns is almost intact. The red curve is the events after the timing cuts marked by
the green lines. The red curve overlaps with the purple in the second timing peak.
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a deuteron timing peak is ∼ 1.5 ns, attributed to the dispersion in momentum and

path length due to the extensions of the target and TOF paddles, and the intrinsic

timing resolution of the two TOFs involved (0.15 ns each).

The azimuthal angular resolution reconstructed from TOFs only is δφTOF ∼ 1-2◦,

where φTOF = tan−1
( y

X

)

is calculated from the vertical position y where the particle

hit the TOF paddle, based on the timing difference between the top and bottom PMTs

(Eq. 3.16), and X is the distance from the beam line to the paddle, which is about

150 cm for the forward angle paddles and 250 cm from the backward ones. X is

known to within a few mm from the geometric survey of the detector frame. The

azimuthal angular resolution is dominated by the ±3 cm intrinsic position resolution

of the TOFs (Sec. 3.3.2) 2. φTOF was used to construct a set of TOF coplanarity cuts

as shown in Fig. 4-3. 5-σ cuts determined from a fit to Gaussian are used. Both the

fit and the cuts are shown in Fig. 4-3.
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Figure 4-3: TOF coplanarity cuts in combination left #1 and right #15. δφTOF =
φrightTOF − φleftTOF − 180◦. The distribution of all events is shown in blue, the event
distribution after the timing cut is shown in red, and is fit to a normal distribution
(green dashed curve). The standard deviation is σ = 1.5◦. 5-σ cuts are marked by
the purple lines.

The energy deposit of the deuterons in the scintillators is also used for PID.

In the three paddles at the most backward angles, deuterons impact with very low

2Close to φTOF ∼ 0, δφTOF ∼
δy

X
≈ 0.03 rad, which is about 1◦, at larger φTOF the error is

larger.
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energy and are stopped in the plastic scintillator. Therefore the energy deposits are

not separated from those by protons. Both protons and deuterons penetrate the

paddles covering higher Q2. The energy deposits are then proportional to 1/β and

well separated. Fig. 4-4 illustrates both situations and the ADC cut used is shown

with the purple curve.
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Figure 4-4: TOF ADC cuts for proton deuteron differentiation. The vertical axis
in the product of the ADC values from both the top and bottom PMTs. On the
left, the ADC in left TOF #13 is plotted against reconstructed particle momentum.
Deuterons are stopped in this TOF resulting in low ADC values which are not separa-
ble from proton ADCs, which makes ADC based PID between protons and deuterons
impossible. On the right, ADC vs. momentum in left TOF #12 is shown. Both
deuterons and protons penetrate the TOF. Deuterons experience greater energy loss
due to their lower speed. The purple curve shows the cut used. Particles with ADC
values below the purple curve are determined to be protons, not deuterons.

4.2.2 Elastic WC Cuts

A set of fiducial cuts were developed to delimit the geometric “trust region” in the

drift chambers. The regions close to the edges of wire chambers have large possibilities

for reconstruction errors. Such regions include, for instance at large azimuthal angles

(|φ| & 15◦ in the left and |φ − 180◦| & 15◦ in the right), and at very forward or

backward polar angles. The polar scattering angles are required to be within the

interval 24◦ < θ < 76◦. The events are then binned into slices in θ and the φ
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distribution within each bin is fit to a trapezoidal shape. The full width at half the

plateau height is taken as the trusted region in φ for the corresponding θ. The φ

boundaries of the trusted regions are fit to 2nd order polynomials in θ to facilitate the

application of these cuts. Fig. 4-5 illustrates the acceptance cuts.
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Figure 4-5: The geometric acceptance of BLAST detectors. On the top, the φ distri-
bution in a θ slice is fit to a trapezoid shape, the full width at half the plateau height
is taken as the trust region. On the bottom, the boundaries of φ trust regions are fit
to quadratic polynomials in θ for left and right sectors, and are shown by the dark
curves.

For the coincident elastic channel, the BLAST drift chambers provide 4 tracking

parameters (p,θ,φ,z) for both the electron and deuteron. Elastic kinematics can be

determined from only three coordinates, for example (θe, φe, ze), while the others (pe,

pd, θd, φd and zd) are redundant. In particular, with ideal reconstruction, zd = ze,

φd = φe ± 180◦ and pe, pd and θd are functions of θe. The electro-disintegration
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channel, on the other hand, does not have such over determined kinematics due to

the Fermi motion of the nucleons inside the deuteron. The drift chamber tracking

parameters thus form a very powerful set of kinematic cuts that separate the ed-elastic

events and the D(e, e′p) events from the electro-disintegration of the deuteron.

The tracking resolution is observed to have a strong dependence on polar scattering

angle, and the resolution is considerably worse at very forward angles where tracks

impact the drift chamber cells at large angles (Sec. 3.3.5). The kinematic cuts are

therefore calibrated as functions of electron scattering angle θe. For example, the θe

acceptance is binned into slices of 1◦ in width. The difference δpe(θe) = pe − pe(θe),
where pe is the measured electron cementum and pe(θe) is the electron momentum

calculated from the measured electron scattering angle, is histogramed for each bin

and fit to a normal distribution with mean µpe
and standard deviation σpe

, both of

which are in turn fit to 2nd order polynomials in θe. The reconstructed pe values are

corrected with µpe
(θe) to remove the slight systematic deviations and symmetric 3-

σpe
(θe) cuts are then applied around zero. At high Q2 where statistics are insufficient

for reliable estimation of σ, cuts with constant width are used.

The reconstruction algorithm does not correct for any energy loss by the parti-

cles in the detector media. In contrast to electrons and protons, the energy loss of

deuterons causes significant systematic errors in tracking 3. Energy loss of deuterons

was simulated in GEANT, the difference between the reconstructed deuteron momen-

tum and the true value was parameterized into a 2nd order polynomial of θe which

was used to up-shift the measured deuteron momentum before any further corrections

and cuts were applied. At high Q2, all the quadratic polynomials are connected con-

tinuously to a constant function to avoid numerical instabilities. Fig. 4-6 shows the

resolutions in θd, pe, pd, φ and z. The centroid of the distributions and the kinematics

cuts are also shown. The green curves depict the 3-σ boundary of the histograms, the

3GEANT simulation showed that maximum systematic error in proton momentum due to uncor-
rected energy loss is 3-4 MeV, while this error could be as large as 20 MeV for deuterons. Deuteron
momentum reconstruction is also more suseptible to multiple scattering with the atoms in the de-
tector media, therefore has lower resolution as well. However, reconstructed deuteron momentum
is only used in event selection, therefore the larger systematic error and poorer resolution are not
critical.
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black curves are quadratic fits to those boundaries and the means. The low statistics

at large θe preclude reliable fits of the mean µ and standard deviation σ. The pur-

ple curves in the pd figures are the parameterized energy loss curves obtained from

GEANT simulation. It must be stressed that the kinematics corrections were only

used to simplify the event selection process and had no effect on the Q2 determination,

which depends solely on the electron scattering angle.
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Figure 4-6: Distribution of kinematic variables compared to the calculated values
from θe. The left (right) panels correspond to events with the electron scattering
into the left (right) sector. From top to bottom, θd − θd(θe), pe − pe(θe), pd − pd(θe),
φe − φd ± 180 and ze − zd are drawn. See text for the meaning of the curves.
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4.2.3 Backgrounds and Yields

The background in the elastic (D(e, e′d)) sample comes from two major sources:

proton or deuteron knockout from the target cell wall (X(e, e′p) and X(e, e′d)), and

D(e, e′p) events, from the electro-disintegration of deuteron, not rejected by the cuts.

Empty target runs are taken during ABS down times to study cell wall back-

grounds. 144 kC of empty target data were analyzed and the mis-identified ed-elastic

rate is 0.00024 /C. This background includes X(e, e′p) as well as X(e, e′d) from the

cell wall. Under the presence of the target gas, the collision of beam electrons with

the target gas particles causes the electron beam to broaden slightly, thus increase

the possibility of the beam halo striking the target cell wall. 342 kC of hydrogen

target data were also analyzed 4. The mis-identified ed-elastic rate is 0.00039 /C.

The background rate with gas in target was indeed higher than with an empty target

cell. This background estimation includes X(e, e′p) and X(e, e′d) from the cell wall,

elastic H(e, e′p) from the hydrogen target gas not rejected by the cuts, as well as the

actual elastic scattering from the deuterium contamination in the hydrogen target

gas 5. Both background rates are lower than 0.1% of the ed-elastic rate obtained with

the deuterium target. As a result, no background subtraction was necessary.

The electro-disintegration of deuterium produces large numbers of protons. With

the most probable Fermi momentum of the proton inside the deuteron about 50 MeV,

the knocked-out protons are smeared into the ed-elastic kinematic cuts. The signal

to noise ratio in timing and kinematics are low when used separately, especially at

high Q2. However, the reconstructed mass spectra, combining both kinematic and

timing information, serve as a good particle identification. Fig. 4-7 shows the typical

mass spectra in the bin 0.465 (GeV/c)2 < Q2 < 0.532 (GeV/c)2. Two histograms

are shown, one with 6-σ WC kinematic cuts and the other with 3-σ cuts. The 6-σ

cuts include many protons from the electro-disintegration channel, which manifest

4Almost all the hydrogen runs were taken in between the two deuterium run periods (Oct.-Dec.
2004) with the ABS target.

5The abundance of D2 in natural hydrogen gas is 1.4 × 10−4. The ABS transition units and
sextupole magnets do not focus deuterons when operating for polarized hydrogen target. Therefore
the deuterium contamination in the polarized hydrogen target is extremely low.
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Figure 4-7: The reconstructed mass of the positively charge particles in the bin
0.465(GeV/c)2 < Q2 < 0.532(GeV/c)2 in coincidence with an electron in the right
sector. Events after 6-σ kinematics are shown for reference where the proton mass
peak is clearly visible. The tighter 3-σ kinematic cuts properly excludes all the events
under the proton peak. The separation between the proton and deuteron mass peak
is 5-σM .

themselves in the peak about the proton mass of 1 GeV/c2. On the other hand, the

3-σ cuts cleanly select the deuterons, which concentrate in the peak around deuteron

mass of 1.8 GeV/c2. The mass resolution σM is about 100 MeV/c2 (Sec. 3.3.3 and

Fig. 3-22). The proton and deuteron mass peaks are clearly separated at 1.5 GeV/c2,

which is 5-σM higher than the proton mass. This gives strong confidence that the

misidentified D(e, e′p) contamination is only ∼ 0.1% of the ed-elastic sample 6. The

reconstructed mass spectrum is used as a supplementary PID, where the mass of the

positively charged particle is required to be greater than 1.5 GeV/c2.

The elastic yield was monitored on a daily basis as shown in Fig. 4-8 7. The

ABS flow intensity was estimated with the UGBS system (Sec. 3.2.3). The yields are

6A rough estimate of proton contamination can be given as follows. The observed ratio between
D(e, e′p) and elastic (D(e, e′d) yields is 40 for all the Q2 bins. Since the mass peaks are separated by

at least 4-σ, the contamination is thus estimated as:
np
nd

= 40×N(4,∞) ∼ 0.126% where N(ζ,∞)

is the probability for a standard normal distribution to lie beyond ζ. The kinematic cuts help to
further reduce this contamination

7Before April 14th in the 2005 running period, a miscalibration in LDCCT 3.1.2 caused beam
current to be overestimated leading to underestimated yields by about 10%. The mistake is yet to
be corrected at the time of this writing. Nevertheless, there is no evidence that the the effect on
integrated charge was correlated to beam helicity of target polarizations; therefore, the measured
asymmetries should not be affected.
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Figure 4-8: Elastic yields observed on a daily basis. Yield in the 2005 run period
was 20% lower than in 2004. Some of the periods between ABS nozzle regenerations
are visible, where the rate was high immediately after the service and decreases with
time. The beam current was 100 mA on the last three days which established a
dependence of rate on beam current.

compared to the estimations from Monte Carlo (MC), thereby obtaining the ed-elastic

detection efficiency. For the 2004 run period, the efficiency was 58% and in 2005, 50%.

The Q2 dependence of the yield is compared to simulations in Fig. 4-9. The MC is

normalized by a factor corresponding to the efficiency. Cell wall backgrounds are

also shown in the figure for comparison. The background is properly normalized

according to the charge accumulated in the deuterium and empty/hydrogen runs.

The background is concentrated at low Q2 and is lower than 0.1% of the elastic yield.

There is a large inefficiency at low Q2 when electrons are detected in the right

sector, which is clearly visible in the difference between the blue and red curves at

0.1 < Q2 < 0.2 (GeV/c)2 in Fig. 4-9. Albeit inconclusive, it is traced to the drift

chambers at large backward angle in the left sector. 2-σ TOF timing and coplanarity

cuts are used to establish a reasonably clean ed-elastic trigger sample without re-

sorting to the drift chambers. The drift chamber efficiency is then determined by

the fraction of events with tracks reconstructed. Fig. 4-10 illustrates the findings.

The left plot shows that the region close to the backward edge of the left chambers

has considerably lower efficiency, where only ∼ 82% of the triggers selected by the
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Figure 4-9: Elastic yield as a function of Q2 compared to Monte Carlo simulation.
The cell wall backgrounds extracted from empty and hydrogen target runs are also
shown. The Monte Carlo is normalized to match the total counts in data and the
scaling factor is used to estimate the overall detection efficiency.

TOF cuts have a deuteron trajectory reconstructed. Convoluted with the tracking

efficiency at the right forward angle (∼ 92%), the coincidence efficiency of the left-15

and right-0 combination is only 75% as shown in Fig. 4-10 8. The study also estab-

lished that the poor robustness in tracking under kinematic cuts is the main cause of

the low elastic detection efficiency. Almost 90% of the triggers selected by the TOF

cuts reconstruct to coincidence events in the drift chambers. Yet many of the events

did not survive the kinematic restrictions, leading to the low final ed-elastic event

detection efficiency (58% for 2004 and 50% for 2005). This finding is consistent with

elastic electron proton scattering [83] (Sec. 3.3.7). This inefficiency results in loss of

statistics but has no other adverse impact on the asymmetry measurements.

8The drift chamber efficiency study using elastic events from hydrogen target (Sec. 3.3.7) failed
to reveal the inefficiency in this very backward region in the chamber since very few protons recoil
elastically into that region.
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Figure 4-10: The cause of missing statistics at low Q2 when electrons scatter into
the right sector is suspected to be the low drift chamber efficiency in the left sector
backward region. Define NTOF to be the number of events selected by the 2-σ TOF
timing and coplanarity cuts, Ncoinc ± represents the number of events with one track
reconstructed in each sector with opposite charges and Ntrk is the number of events

with at least one track found in either sector. On the top the ratio
Ncoinc ±
NTOF

is shown.

The acceptance covered by left TOF 15 shows considerably lower efficiency. This

results in the low deuteron detection efficiency. On the bottom the ratio
Ntrk

NTOF

is

shown. Without requiring a coincidence in left and right drift chambers, the ineffi-
ciencies in the bottom figures are further separated, while the top figure illustrates
the convolution across the two sectors. Again, the edge efficiency of the left drift
chambers is considerably lower.
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4.3 Asymmetry

4.3.1 Q2 Determination

Q2 is determined from the electron scattering angle θe alone. In principle, in the

coincident elastic channel, it can also be determined from three other independent

kinematic variables reconstructed from drift chamber hits: pe, pd and θd. Deuteron

reconstruction suffered systematic errors due to edge effects in the drift chambers,

strong multiple scattering and energy loss. Moreover, θe appears to have better

accuracy and resolution than pe. The advantage in resolution and accuracy in θe

against pe is also observed in the elastic hydrogen reaction [83] and other channels

from the deuterium target. The entire Q2 acceptance is divided into 11 bins. The

average Q2 value in each bin is associated with the measured asymmetries A(Q2) 9.

4.3.2 Experimental Asymmetry

The deuterium experiment had six combinations of beam and target polarizations.

The beam helicity h = ± was flipped every fill which typically lasted 10-15 min-

utes. The target polarization switched randomly among three possible vector-tensor

(Pz-Pzz) states: (+,+), (−,+) and (0,−2), with 5 minutes residence time between

switches. Hence the six beam-target spin states can be denoted, with (h, Pz, Pzz)

triplets, as: (+,+,+), (+,−,+), (+, 0,−2), (−,+,+), (−,−,+), and (−, 0,−2).
The following definition is used to extract the experimental asymmetries 10,

Aexp =
√
2

Y + − Y −

P+
zzY

− − P−
zzY

+
, (4.1)

where Y ± are the counts in tensor ± states respectively normalized by the corre-

sponding accumulated charges, and P±
zz is the polarization in the tensor ± states. As

9It is well known that: 〈Y (X)〉 = Y (〈X〉) + 1

2
Y ′′(〈X〉)∆X2, where 〈.〉 stands for the mean value

operation, Y ′′ is the 2nd derivative of Y with respect to X, and ∆X2 =
〈

(X − 〈X〉)2
〉

=
〈

X2
〉

−〈X〉2
is the Mean Square Error of X. Therefore, the error resulting from associating it with the average
Q2 value is given by 1

2Y
′′(〈X〉)∆X2 which is less than 0.5%.

10Although the tensor + states are simultaneously vector polarized, it is a simple algebraic exercise
to show that the beam-vector asymmetries cancel out when charge is evenly distributed among the
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discussed in Sec. 4.2.3, background contributions from both the cell wall (X(e, e′p)

andX(e, e′d)) and electro-disintegration channel are less than 0.1% of the elastic yield;

hence, no background correction was deemed necessary. Since the target tensor po-

larization is measured from the elastic reaction, the raw asymmetry is first measured

based on the assumption that all states are equally polarized: P−
zz = −2P+

zz = −2P zz,

Araw =
√
2
Y + − Y −

Y − + 2Y +
= P zz × Aexp. (4.2)

The raw asymmetries are tabulated in Tab. 4.2 and shown in Fig. 4-11 11.

4.3.3 Target Polarization and Spin Angle

The target tensor polarization Pzz is measured by normalizingAraw atQ2 < 0.18 (GeV/c)2

(the first two of 11 bins) to model predictions. The extracted Pzz value therefore de-

pends on the choice of the theoretical model. Abbott’s parameterization III [61] of

four possible beam-vector states. The proof goes as follows:

Y + =
σ(+,+,+)q(+,+,+) + σ(+,−,+)q(+,−,+) + σ(−,+,+)q(−,+,+) + σ(−,−,+)q(−,−,+)

q(+,+,+) + q(+,−,+) + q(−,+,+) + q(−,−,+)
,

with q =
q(+,+,+) + q(+,−,+) + q(−,+,+) + q(−,−,+)

4
, andδq(h, Pz, Pzz) = q(h, Pz, Pzz)− q,

Y + =
σ0

4q

[

(1 +A(+,+,+))(q + δq(+,+,+)) + (1 +A(+,1,+))(q + δq(+,−,+))

+(1 +A(−,+,+))(q + δq(−,+,+)) + (1 +A(−,−,+))(q + δq(−,−,+))
]

,

where A(+,+,+) = +hPzA
V
ed + P+

zzA
T
d A(+,−,+) = −hPzA

V
ed + P+

zzA
T
d

A(−,+,+) = −hPzA
V
ed + P+

zzA
T
d A(−,−,+) = +hPzA

V
ed + P+

zzA
T
d

Y + = σ0

(

1 + P+
zzA

T
d + hPzA

V
ed

q(+,+,+) − q(+,−,+) − q(−,+,+) + q(−,−,+)

4q

)

Y − =
σ(+,0,−2)q(+,0,−2) + σ(−,0,−2)q(−,0,−2)

q(+,0,−2) + q(−,0,−2)
= σ0

(

1 + P−
zzA

T
)

therefore

Aexp = AT

[

1 +
hPzA

V
ed

AT
d

1 + P−
zzA

T
d

P+
zz − P−

zz

q(+,+,+) − q(+,−,+) − q(−,+,+) + q(−,−,+)

4q

]

.

Typically
hPzA

V
ed

AT
d

∼ 0.1,
1 + P−

zzA
T
d

P+
zz − P−

zz

∼ 0.1, and
q(+,+,+) − q(+,−,+) − q(−,+,+) + q(−,−,+)

4q
∼ 0.01, so

the error introduced is on the order of 0.01% of Aexp itself. The definition used avoids low-count
statistics by combining counts in different states.

11The last bin in the perpendicular kinematics in 2004 data set had less than 10 counts. The
statistical uncertainty for this low yield bin is adjusted according to the Neyman construction of
31.7% confidence interval for Poisson counting processes [90].
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Figure 4-11: Asymmetries Araw observed for 2004 and 2005 data sets. The nominal
spin orientations are 32◦ and 47◦ respectively. The Monte Carlo fits to data at Q2 <
0.18 (GeV/c)2 are shown. The T21 and T22 contributions to the asymmetries are also
show to illustrate the sensitivities.
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Year Charge q+++ (kC) q+−+ (kC) q+0−2 (kC) q−++ (kC) q−−+ (kC) q−0−2 (kC)

2004
∫

Ilivedt 60.93 60.87 60.78 61.99 61.23 61.49

2005
∫

Ilivedt 94.62 93.43 93.34 91.77 93.41 94.77

2004 Nominal Spin Angle θd = 32◦ beam left

Perpendicular Kinematics (e′ left) Parallel Kinematics (e′ right)

Q2 (GeV/c)2 δQ2 (GeV/c)2 N+ N− A⊥
raw δA⊥

raw Q2 (GeV/c)2 δQ2 (GeV/c)2 N+ N− A
‖
raw δA

‖
raw

0.1371 3.9×10−5 28926 10874 0.1267 0.0047 0.1358 4.9×10−5 17030 10348 -0.0957 0.0062
0.1632 4.6×10−5 25543 8935 0.1566 0.0050 0.1642 5.2×10−5 16298 10387 -0.1196 0.0063
0.1934 6.4×10−5 13746 4259 0.2046 0.0067 0.1933 6.8×10−5 9514 6399 -0.1469 0.0082
0.2252 1.0×10−4 7600 2151 0.2384 0.0089 0.2250 1.1×10−4 4866 3718 -0.213 0.011
0.2631 1.7×10−4 4475 1055 0.302 0.011 0.2641 1.8×10−4 2767 2348 -0.268 0.015
0.3131 3.1×10−4 1830 366 0.353 0.017 0.3104 3.3×10−4 1010 915 -0.302 0.024
0.3640 4.6×10−4 1120 183 0.409 0.020 0.3664 5.6×10−4 466 442 -0.327 0.035
0.4281 8.9×10−4 407 63 0.422 0.033 0.4285 0.0011 168 150 -0.295 0.059
0.4926 0.0014 166 28 0.400 0.054 0.4926 0.0016 59 57 -0.34 0.10
0.5693 0.0029 78 10 0.466 0.072 0.5705 0.0031 33 36 -0.40 0.13
0.6668 0.0061 50 6 0.479 0.088 0.6538 0.0047 24 19 -0.23 0.16

2005 Nominal Spin Angle θd = 47◦ beam left

Perpendicular Kinematics (e′ left) Parallel Kinematics (e′ right)

Q2 (GeV/c)2 δQ2 (GeV/c)2 N+ N− A⊥
raw δA⊥

raw Q2 (GeV/c)2 δQ2 (GeV/c)2 N+ N− A
‖
raw δA

‖
raw

0.1374 3.6×10−5 31296 15709 0.0019 0.0046 0.1361 4.5×10−5 18564 13806 -0.1935 0.0058
0.1632 4.1×10−5 29288 14320 0.0142 0.0048 0.1643 4.7×10−5 17924 14752 -0.2464 0.0058
0.1932 5.8×10−5 14917 7079 0.0281 0.0067 0.1935 6.2×10−5 10090 9299 -0.3061 0.0076
0.2248 9.3×10−5 7781 3484 0.0546 0.0092 0.2249 9.8×10−5 5154 5444 -0.378 0.010
0.2638 1.6×10−4 4529 1949 0.072 0.012 0.2642 1.6×10−4 3008 3523 -0.433 0.013
0.3107 2.9×10−4 1677 656 0.114 0.020 0.3103 2.8×10−4 989 1440 -0.546 0.021
0.3644 6.2×10−4 560 193 0.167 0.034 0.3667 4.8×10−4 450 713 -0.589 0.030
0.4319 9.5×10−4 258 103 0.105 0.050 0.4276 0.0010 136 219 -0.598 0.055
0.4939 0.0011 182 74 0.097 0.060 0.4942 0.0014 66 112 -0.624 0.077
0.5705 0.0018 117 53 0.058 0.075 0.5647 0.0023 40 56 -0.53 0.11
0.6782 0.0060 40 22 -0.042 0.13 0.6649 0.0066 17 11 -0.12 0.20

Table 4.2: Integrated beam current q(h,Pz ,Pzz) (for beam helicity h and target polarization (Pz, Pzz)), average Q
2 ( (GeV/c)2),

counts NPzz , and asymmetries Araw for each Q2 bin. The error δAraw is statistical only. Q2 is in units of (GeV/c)2.
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the form factors was used as it is based on world data and lies approximately at the

middle of the range covered by various models. A indepth discussion of the systematic

caused by this normalization procedure is provided in Sec. 4.6.

Since two asymmetries, A
‖
raw and A⊥

raw, were observed simultaneously in parallel

and perpendicular kinematics respectively, one additional parameter can be deter-

mined besides Pzz. The elastic asymmetries were therefore used to monitor an impor-

tant experimental parameter, namely the target spin angle, θS, defined as the angle

between the target spin quantization axis and the beam line 12.

Pzz is extracted as the overall scaling factor that fits the asymmetries in the first

two bins to the polynomials representing Monte Carlo asymmetries AMC (Sec. 4.1),

or simply put 13,

P ‖
zz(θS) =

A
‖
raw

A
‖
MC(θS)

, and P⊥
zz(θS) =

A⊥
raw

A⊥
MC(θS)

. (4.3)

The measured average spin angle is the θS where P ‖
zz(θS) = P⊥

zz(θS). The uncertainty

of θS is estimated by the confidence interval whose end points are defined by,

χ =
P

‖
zz(θS)− P⊥

zz(θS)
√

[δP
‖
zz(θS)]2 + [δP⊥

zz(θS)]
2

= ±1, (4.4)

where δP
‖
zz and δP⊥

zz represent the uncertainties in the measured polarizations.

The extracted value of Pzz depends on the spin angle; therefore, the uncertainty

in θS propagates into the polarizations. However, the spin angle sensitivity largely

12It is estimated that the neuron charge form factor, Gn
E , simultaneously measured from D(e, e′n)

channel has a sensitivity to spin orientation of 12%/degree.
13The actual fit procedure minimizes,

χ2
‖,⊥ =

(

A
‖,⊥
raw(Q2

1)− P
‖,⊥
zz A

‖,⊥
MC(Q

2
1)

δA
‖,⊥
raw(Q2

1)

)2

+

(

A
‖,⊥
raw(Q2

2)− P
‖,⊥
zz A

‖,⊥
MC(Q

2
2)

δA
‖,⊥
raw(Q2

2)

)2

,

where Q2
1,2 are the Q2 for the 1st and 2nd bins.
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cancels out when the difference A⊥
raw − A

‖
raw is used to measure the polarization 14,

P⊥−‖
zz =

A⊥
raw − A

‖
raw

A⊥
MC(θS)− A

‖
MC(θS)

. (4.5)

The procedure is illustrated in Fig. 4-12. The tensor polarizations and average spin
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Figure 4-12: The polarization and spin angle measurements for 2004 (left) and 2005
(right) data sets. Pzz is extracted in both parallel and perpendicular kinematics
for a range of θS. Self-consistent measurements of both Pzz and θS are obtained
simultaneously. The P diff

zz fit from A
⊥−‖
raw = A⊥

raw−A
‖
raw is not sensitive to uncertainties

in θS. The Monte Carlo asymmetry AMC has opposite sign to the observed Araw in
the perpendicular kinematics for θS above 49◦, resulting in negative Pzz which is
unphysical due to the definition of target polarization. This provides an additional
bound of error by constraining θS to be below 49◦. The procedure was also applied
with vertex cuts selecting subranges along the target cell to measure spin angle and
tensor polarization profiles. The spin angle profiles are compared to target field
surveys and TOSCA simulations (Sec. 3.2.2).

angles thus determined are, Pzz = 0.683 ± 0.015, θS = 31.72 ± 0.35 in 2004 and

Pzz = 0.563 ± 0.013, θS = 47.74 ± 0.42 in 2005. The uncertainties are statistical

only and systematic errors are discussed in detail in Sec. 4.5. The procedure was

also applied with vertex cuts selecting subranges along the target cell to measure

z-dependence of the spin angle (Fig. 3-9) and the tensor polarization (Fig. 3-10).

The spin angle profiles are compared to target field surveys and TOSCA simulations

14The average of P
‖
zz and P⊥

zz does not have any physical significance as the two are forced to be
the same by shifting θS .
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(Sec. 3.2.2). There are discrepancies between the target field surveys and the spin

angle measured with tensor ed-elastic asymmetries, as described in this section. The

differences and their significance are discussed in detail in Sec. 4.5.3.

There are two major approximations in the Monte Carlo (MC) asymmetry AMC

used in Eqs. 4.3 and 4.5: 1) The MC assumed a constant spin angle, while the actual

holding field direction varies within the ±20 cm range along the target cell; 2) The

polynomial fit of AMC may introduce a fit error. Because Pzz and θS are of great

importance to not only ed-elastic analysis but several other channels as well [54, 55],

a discussion is devoted to the impact of these approximations in Sec. 4.5.3.

4.4 T20 and T21

To extract T20 and T21, the asymmetries must be measured at the same Q2 in the left

and right sectors. The raw asymmetries are adjusted to the average Q2 of the left

and right sector according to Monte Carlo simulations,

Al,r
raw(Q

2) = Al,r
raw(Q

2
l,r)

Al,r
MC(Q

2)

Al,r
MC(Q

2
l,r)

. (4.6)

Here Q2
l.r are the mean Q2 in each bin with electron scattered into the left and right

sector respectively (The values are tabulated in Tab. 4.2), Q2 is the average Q2 in

each bin for all the events in both left and right sectors, Al,r
raw if defined by Eq. 4.2

with the superscript l, r denoting the case where the electron is detected in the left

and right sector respectively, and Al,r
MC is the asymmetry extracted from Monte Carlo

simulation. The correction is less than 1% except for the highest Q2 bin, where it is

about 1-2%, which is much smaller than the statistical errors.

Araw is converted to,

Aexp =
Araw

Pzz
. (4.7)

For each bin, Aexp can be expressed as combinations of T20, T21 and T22 modulated
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by kinematic coefficients:

Aexp =
〈

d200(θ
∗)T20 + 2d210(θ

∗)cosφ∗T21 + 2d220(θ
∗)cos2φ∗T22

〉

≈
〈

d200(θ
∗)
〉

〈T20〉+ 2
〈

d210(θ
∗)cosφ∗

〉

〈T21〉+ 2
〈

d220(θ
∗)cos2φ∗

〉

〈T22〉

= c20T20 + c21T21 + c22T22, (4.8)

where d200(θ
∗) =

3

2
cos2 θ∗ − 1

2
, d210(θ

∗) = −
√
3

2
cos θ∗ sin θ∗, and d220(θ

∗) =
3

8
sin2 θ∗. The

averages are separated in the second step 15, and the kinematic coefficients are defined

in the third step as c20 = 〈d200(θ∗)〉, c21 = 2 〈d210(θ∗)cosφ∗〉 and c22 = 2 〈d220(θ∗)cos2φ∗〉.
For each Q2 bin, there are two Aexp: A

‖
exp for the parallel and A⊥

exp for the perpendic-

ular kinematics.

4.4.1 The Kinematic Coefficients

The values of the kinematic coefficients are calculated for each event, with the direc-

tion of the momentum transfer (θq, φq) calculated from (θe, φe), and the spin angle

θS(z) in the Lab frame interpolated from the surveyed holding field maps.

It is crucial to recognize that there are discrepancies among the several spin angle

surveys at different times, and between the spin angle measured by the tensor ed-

elastic asymmetry and any of the surveys. These discrepancies are discussed in detail

in Sec. 4.5.3. However, the shape of the spin angle profile, θS(z), obtained from the

several surveys are consistent with each other. Therefore, to be self-consistent, the

15It can be shown that

〈Y1(X)Y2(X)〉 = 〈Y1〉 〈Y2〉+Cov(Y1, Y2)

= 〈Y1〉 〈Y2〉+
dY1

dX

dY2

dX
〈dX · dX〉

= 〈Y1〉 〈Y2〉+
dY1

dX

dY2

dX
Var(X),

where Cov(Y1, Y2) is the covariance between the two variables, and Var(X) is the variance of the
variable X. Typically, for low Q2 bins, Var(Q2) . 10−9 (GeV/c)2 and |dA/dQ2| . 1. For high Q2

bins, Var(Q2) . 10−6 (GeV/c)2 and |dA/dQ2| ∼ 0.1. Therefore the error introduced is less than
10−8 level.
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spin angle profile in the ed-elastic analysis is corrected according to,

tan (θS(z))

tan
(

θprofS (z)
) =

tan
(〈

θedS
〉)

tan
(〈

θprofS

〉) , (4.9)

where θprofS (z) is the spin angle at vertex position z determined by the surveyed

holding field profile,
〈

θedS
〉

is the average spin angles obtained from elastic tensor

asymmetries, and
〈

θprofS

〉

=
1

N

N
∑

i=1

θS(zi), (4.10)

with i running over all the ed-elastic events 16, is the average spin angle profile from

the surveys weighted by the ed-elastic z-vertex distribution. The resulted spin angle

θS(z) is not sensitive to the choice of survey and the January 2005 survey is used

in this work. This survey includes both 32◦ and 47◦ nominal configurations. The

discrepancy with the spin angle determined by ed-elastic asymmetry is the smallest

among all surveyed profiles for both configurations (See Tab. 4.9). The kinematic

coefficients are histogramed and the mean values are obtained for each bin. To correct

for the difference in the Q2
l,r, the coefficients are linearly interpolated between the

measured points to the average Q2. The corrections are less than 1% except for c21

and c22 at high Q
2 in the 2005 data set, where these coefficients themselves are small

in size. For this region, the asymmetry is dominated by c20T20 due to the small size

of c21, c22 and T22. Therefore the corrections to c21 and c22, that are slightly larger

than 1%, do not affect the final results in any significant manner. Fig. 4-13 shows

the distribution of the coefficients for both spin angle orientations in parallel and

perpendicular kinematics. The values of average Q2 and the kinematic coefficients

are tabulated in Tab. 4.3.

16N is about 100, 000 for either 2004 or 2005 data set for the region of Q < 2 fm−1 which is used
in the extraction of Pzz and θS .
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Figure 4-13: The distribution of kinematic coefficients for 2004 (top) and 2005 (bot-
tom) data sets, in parallel (left) and perpendicular (right) kinematics. The distribu-
tions are fit to polynomials and the mean values for each in each Q2 bin is marked.
The spread in the distribution is due to the variation in target spin angle along the
cell.
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2004 Perpendicular Kinematics (e′ left) Parallel Kinematics (e′ right)

Q2 θq θ∗ c20 δc21 c21 δc21 c22 δc22 θ∗ d20 δc20 d21 δc21 d22 δc22
(GeV/c)2 (◦) (◦) (10−4) (10−4) (10−4) (◦) (10−4) (10−4) (10−4)

0.137 71.68 103.5 -0.417 0.31 0.551 1.1 1.148 0.37 40.4 0.368 0.94 -1.201 0.26 0.507 0.74
0.164 69.90 101.4 -0.438 0.29 0.472 1.3 1.164 0.44 38.6 0.416 0.94 -1.184 0.32 0.467 0.70
0.193 68.08 99.6 -0.456 0.31 0.401 1.7 1.177 0.64 36.7 0.462 1.2 -1.163 0.48 0.429 0.85
0.225 66.28 97.7 -0.470 0.36 0.324 2.5 1.188 0.96 35.0 0.504 1.7 -1.140 0.83 0.395 1.2
0.264 64.23 95.7 -0.482 0.38 0.240 3.8 1.198 1.4 32.9 0.557 2.5 -1.104 1.5 0.351 1.8
0.312 61.83 93.3 -0.492 0.32 0.135 6.8 1.205 2.4 30.7 0.605 4.1 -1.064 3.1 0.312 3.0
0.365 59.35 90.7 -0.497 1.2 0.031 9.3 1.208 3.2 28.0 0.670 6.2 -1.000 5.8 0.259 4.6
0.428 56.56 88.2 -0.496 1.1 -0.077 17 1.207 5.8 25.2 0.726 11 -0.928 12 0.212 7.8
0.493 53.87 85.2 -0.487 3.2 -0.203 25 1.199 10 22.9 0.770 14 -0.864 20 0.178 11
0.570 50.76 82.1 -0.468 9.1 -0.335 46 1.183 16 19.5 0.832 22 -0.751 39 0.125 18
0.661 47.21 78.1 -0.436 27 -0.494 89 1.165 29 16.6 0.871 29 -0.656 65 0.093 20

2005 Perpendicular Kinematics (e′ left) Parallel Kinematics (e′ right)

Q2 θq θ∗ c20 δc21 c21 δc21 c22 δc22 θ∗ c20 δc20 c21 δc21 c22 δc22
(GeV/c)2 (◦) (◦) (10−4) (10−4) (10−4) (◦) (10−4) (10−4) (10−4)

0.137 71.66 118.4 -0.141 0.62 1.037 0.78 0.913 0.64 24.7 0.736 0.85 -0.910 0.86 0.197 0.64
0.164 69.89 117.0 -0.177 0.62 0.996 0.90 0.941 0.73 22.7 0.774 0.88 -0.847 0.87 0.165 0.60
0.193 68.09 115.4 -0.213 0.80 0.952 1.3 0.968 1.1 20.8 0.806 1.1 -0.789 1.1 0.138 0.74
0.225 66.28 113.7 -0.251 1.1 0.900 2.0 0.996 1.7 19.2 0.834 1.6 -0.730 1.8 0.114 1.0
0.264 64.21 111.6 -0.293 1.6 0.834 3.2 1.030 2.4 17.2 0.866 2.0 -0.658 2.8 0.0885 1.4
0.310 61.89 109.2 -0.337 2.5 0.753 5.8 1.065 4.2 15.1 0.894 3.2 -0.578 4.9 0.0649 2.1
0.366 59.31 107.1 -0.370 4.2 0.675 12 1.090 7.8 12.7 0.925 4.5 -0.475 8.5 0.0398 3.0
0.430 56.50 104.3 -0.410 5.0 0.572 17 1.121 13 10.4 0.948 7.8 -0.377 18 0.0220 5.1
0.494 53.80 101.6 -0.437 4.6 0.479 21 1.141 14 8.4 0.966 9.6 -0.258 24 0.0053 7.1
0.569 50.82 98.2 -0.468 5.1 0.335 33 1.169 18 6.4 0.979 13 -0.136 39 -0.0059 8.5
0.674 46.71 94.9 -0.487 5.6 0.206 94 1.187 28 5.5 0.982 18 0.033 111 -0.0069 14

Table 4.3: The mean values for the kinematic coefficients and their statistical uncertainties. The direction of three-momentum
transfer θq and the target spin angle θ∗ with respect to q are indicated. When q is in the plane spanned by the beam line and
the target spin quantization axis, θ∗ ≈ θq ± θS. The small deviation from the relationship is caused by the spread in θS and φq.
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4.4.2 T20 and T21 Extraction

The T22 contributions are subtracted and the statistical uncertainties in Q2 are ab-

sorbed into the asymmetries,

A∗ = Aexp − c22T22, (4.11)

δA∗ =

√

(

δAraw

Pzz

)2

+

(

∂Aexp

∂Q2
δQ2

)2

+ (T22δc22)
2 + (c22δT22)

2, (4.12)

where T22 is determined numerically from Abbott’s parameterization III (Sec. 2.3.3) [61]

and δT22 is the theoretical uncertainty in T22. The contribution c22T22 is typically only

a few percent of Aexp, as can be seen from Fig. 4-11. As expected, δA∗ is dominated

by the statistical uncertainties in Araw, while the contribution from the other sources

are insignificant.

It follows from Eq. 4.8 and the definition of A∗ (Eq. 4.11), that A∗ can be expressed

in terms of T20, T21 and the corresponding kinematic coefficients,



















A∗
‖ = c

‖
20T20 + c

‖
21T21

A∗
⊥ = c⊥20T20 + c⊥21T21

. (4.13)

With the kinematic coefficients known (Sec. 4.4.1 and Tab. 4.3), T20 and T21 are found

as the root to the linear equations Eq. 4.13.



































T20 =
c⊥21A

∗
‖ − c

‖
21A

∗
⊥

c⊥21c
‖
20 − c

‖
21c

⊥
20

T21 =
c⊥20A

∗
‖ − c

‖
20A

∗
⊥

c⊥20c
‖
21 − c

‖
20c

⊥
21

, (4.14)

where c
‖,⊥
20,21 are the kinematic coefficients for T20 and T21 in parallel and perpendicular

kinematics respectively. In this method, A∗ from both parallel and perpendicular

kinematics contribute to both T20 and T21. The results are shown in Fig. 4-14 and
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tabulated in Tab. 4.4.

4.4.3 Single T20 Extraction

Instead of solving for both T20 and T21 from the two asymmetries measured simulta-

neously in parallel and perpendicular kinematics, an alternative approach is to use

the world data to subtract the T21 contribution in the asymmetries and use the data

in both sectors to extract T20.

T
‖,⊥
20 =

(

A
‖,⊥
exp − c‖,⊥21 T21 − c

‖,⊥
22 T22

)

c
‖,⊥
20

. (4.15)

The T20 values extracted from the two sectors are then combined by weighted average,

T s
20 =

(

1

δT
‖
20

)2

T
‖
20 +

(

1
δT⊥

20

)2

T⊥
20

(

1

δT
‖
20

)2

+
(

1
δT⊥

20

)2
. (4.16)

The results are shown in Fig. 4-15 and included in Tab. 4.4 also. The subtraction

of the T21 contribution introduces an additional amount of uncertainty, which is dis-

cussed in Sec. 4.5.4. The results are generally in agreement with the T20 extracted

simultaneously with T21 as described in Sec. 4.4.2. The consistency and differences

are discussed in detail in Sec. 4.5.4 also.
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Figure 4-14: T20 and T21 measured from 2004 (top) and 2005 (bottom) data sets. The
curves are: Abbott’s parameterization I (blue, dashed), II (blue, dash-dot), III (blue,
solid), Arenhövel (green, dashed), van Orden (green, dash-dotted), Schiavilla (orange,
dashed), LP2 (violet, dashed), Krutov (violet, dash-dotted), Buchmann full (yellow,
dashed), and Tjon (yellow, dash-dotted). The brown dash-dotted curve shows the
size of T22 for comparison.
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Figure 4-15: Single T20 extraction from 2004 (left) and 2005 (right) data sets. The
curves as in Fig. 4-14.
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Q2 θe A∗
‖ δA∗

‖ A∗
⊥ δA∗

⊥ T20 δT20 T21 δT21 T s
20 δT s

20(GeV/c)2 (◦)

0.137 a 25.67 -0.1359 0.0091 0.1959 0.0069 -0.541 0.033 -0.053 0.015 -0.557 0.014
0.164 a 28.28 -0.1677 0.0093 0.2448 0.0073 -0.655 0.030 -0.089 0.016 -0.646 0.013
0.193 30.95 -0.208 0.012 0.3185 0.0098 -0.833 0.036 -0.152 0.021 -0.770 0.017
0.225 33.65 -0.304 0.017 0.372 0.013 -0.875 0.042 -0.120 0.027 -0.906 0.021
0.264 36.75 -0.383 0.022 0.472 0.016 -1.075 0.047 -0.196 0.035 -1.064 0.026
0.312 40.46 -0.436 0.035 0.550 0.025 -1.191 0.061 -0.268 0.052 -1.169 0.038
0.365 44.37 -0.465 0.052 0.642 0.030 -1.319 0.063 -0.419 0.068 -1.251 0.048
0.428 48.88 -0.425 0.087 0.679 0.049 -1.285 0.089 -0.55 0.11 -1.212 0.076
0.493 55.35 -0.49 0.14 0.633 0.079 -1.12 0.13 -0.44 0.16 -1.12 0.12
0.570 58.68 -0.59 0.19 0.73 0.11 -1.18 0.17 -0.53 0.20 -1.17 0.16
0.661 65.00 -0.33 0.24 0.75 0.14 -0.91 0.21 -0.71 0.22 -0.93 0.21

Q2 θe A∗
‖ δA∗

‖ A∗
⊥ δA∗

⊥ T20 δT20 T21 δT21 T s
20 δT s

20(GeV/c)2 (◦)

0.137 a 25.70 -0.345 0.010 0.0110 0.0082 -0.548 0.021 -0.064 0.010 -0.544 0.014
0.164 a 28.28 -0.434 0.010 0.0375 0.0084 -0.645 0.020 -0.076 0.011 -0.654 0.013
0.193 30.95 -0.542 0.014 0.066 0.012 -0.775 0.027 -0.105 0.017 -0.783 0.016
0.225 33.63 -0.671 0.018 0.117 0.016 -0.914 0.036 -0.125 0.025 -0.935 0.021
0.264 36.79 -0.769 0.023 0.154 0.021 -1.020 0.045 -0.173 0.037 -1.034 0.025
0.310 40.36 -0.972 0.038 0.234 0.035 -1.247 0.073 -0.247 0.071 -1.242 0.039
0.366 44.43 -1.048 0.054 0.337 0.060 -1.22 0.10 -0.17 0.13 -1.311 0.055
0.430 48.98 -1.067 0.098 0.232 0.089 -1.35 0.17 -0.56 0.24 -1.241 0.093
0.494 53.46 -1.11 0.14 0.22 0.11 -1.36 0.20 -0.78 0.34 -1.20 0.12
0.569 58.58 -0.93 0.19 0.15 0.13 -1.11 0.25 -1.09 0.60 -0.90 0.16
0.674 65.91 -0.21 0.35 -0.03 0.23 -0.20 0.33 -0.6 1.3 -0.17 0.28

a The first two bins are used for normalization hence do not present new measurements.

Table 4.4: The asymmetries A∗ with T22 components subtracted are shown. Combined with the kinematic
coefficients in Tab. 4.3, T20 and T21 are extracted. The single extractions of T20, as explained in Sec. 4.4.3,
are shown as T s

20.

20
04

20
05
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4.5 Systematic Uncertainties

The systematic errors have several origins. The reconstruction of θe is not perfectly

accurate (Sec. 4.5.1). This error enters into both the momentum transfer Q2 and the

target spin orientation θ∗ relative to the momentum transfer. The analysis assumes

that the tensor plus and minus (Pzz = 1 and −2 respectively) states are equally

polarized, any deviation from this assumption causes errors in the results (Sec. 4.5.2).

The target spin orientation θS in the LAB is not accurately known either, which

affects the determination of the target tensor polarization Pzz and θ∗ (Sec. 4.5.3).

The statistical and systematic errors in the low Q2 data affect the determination of

Pzz and the spin angle θS (Sec. 4.5.3), which in turn propagate into the high Q2 data

points. Systematic errors in these important variables all contribute to the errors in

T20 and T21 (Sec. 4.5.4). Whenever possible, both analytical error estimations and

Monte Carlo verifications are provided.

In this section, the following notation will be adopted: 1) The superscript ˜ in-

dicates that the variable is measured in the low Q2 bins used for the measurement

of Pzz and θS; 2) ∆X(∆Y ) denotes the error in X caused by the error in Y , for

example ∆Aexp(∆θe) means the error in the asymmetry Aexp due to the error in the

reconstruction of the electron scattering angle θe; 3) Statistical errors are denoted

by δ, while systematic errors are denoted with ∆. For example, δPzz stands for the

statistical error in the tensor polarization, and ∆Pzz(∆θ̃e) is the uncertainty in Pzz

caused by the reconstruction error in θ̃e.

4.5.1 Errors in θe and Q2

It is not possible to determine exactly the error in θe, which is used to calculate both

Q2 and θ∗. Estimations, however, can be made. In the elastic H(e, e′p) reaction from

hydrogen target, Q2 can be calculated from either electron scattering angle θe or the

proton scattering angle θp. The energy loss by the proton along its trajectory was

less than 3-4 MeV/c, therefore reconstruction for protons is sufficiently accurate and
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reliable 17. With two independent sources to determine Q2, the discrepancy between

Q2(θe) and Q
2(θp) provides information on the systematic reconstruction errors in θe

and θp. The error in θe can be estimated if the error in θp is ignored. TheQ
2 calculated

from θe and θp differ by about 0.0025 (GeV/c)2 below Q2 of 0.28 (GeV/c)2, which

corresponds to ∆θe ≈ 0.2◦. At higher Q2,
∣

∣Q2(θe)−Q2(θp)
∣

∣ ≈ 0.004 (GeV/c)2, which

corresponds to ∆θe ≈ 0.4◦ [83].

Although the ep-elastic kinematics are different from the elastic scattering from

the deuteron, these observations from hydrogen target data are used to estimate the

tracking error, i.e., the systematic error in the electron scattering angle θe. Through-

out the analysis, the estimate is used that ∆θe = 0.2◦ for the first four bins (Q2 < 0.25)

and ∆θe = 0.4◦ in the rest of the acceptance.

The tracking errors are likely to be independent, between the two sectors and

between different Q2 bins, as the particles travel through different geometric regions

in the drift chambers. However, an overall error in the BLAST toroidal field measure-

ment or an error in the position of the chambers could cause uniform shifts in tracking

across the entire acceptance. Denote ∆θe as the error in θe that are independent from

each other, and ∆θ∗e as the errors that are correlated between Q2 bins. The error in

Aexp due to ∆θe can simply be estimated by,

∆Aexp(∆θe) =
∂Aexp

∂θe
∆θe. (4.17)

The effect of ∆θ∗e is more subtle because it affects the asymmetries at low and high

Q2 in a correlated manner. At low Q2 used for normalization, it causes an error in

Pzz: ∆Pzz(∆θ
∗
e) =

Pzz

Ãexp

∂Ãexp

∂θe
∆θ∗e , where Ãexp stands for the asymmetry in the low

Q2 bins used for the normalization. Since Aexp =
Araw

Pzz
for the high Q2 bins, (Eq. 4.7),

17Unfortunately the deuteron reconstruction suffered poor resolution and uncorrected energy loss
which prevented the application of the same procedure. Nevertheless, the energy loss of deuteron is
largely irrelevant in the ed-elastic analysis, as the Q2 is determined purely from electron scattering
angle θe.
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2004 2005
kinematics

θe ‖ ⊥ ‖ ⊥
27◦ Ãexp −0.166 0.203 −0.389 0.020

∂Ãexp

∂θe
(/◦) −0.020 0.020 −0.035 0.008

34◦ Aexp −0.323 0.355 −0.657 0.095
∂Aexp

∂θe
(/◦) −0.024 0.022 −0.039 0.013

δAexp 0.017 0.013 0.018 0.016
∆Aexp(∆θe) 0.0048 0.0044 0.0078 0.0026
∆Aexp(∆θ

∗
e) 0.0026 −0.0026 0.0040 −0.0049

45◦ Aexp −0.563 0.569 −1.016 0.24
∂Aexp

∂θe
(/◦) −0.014 0.013 −0.020 0.01

δAexp 0.052 0.030 0.054 0.060
∆Aexp(∆θe) 0.0056 0.0052 0.0080 0.0048
∆Aexp(∆θ

∗
e) 0.010 −0.0086 0.014 −0.017

Table 4.5: Variables in Eqs. 4.17 and 4.18 and the resulting systematic uncertainty
in Aexp. The asymmetry Ãexp at θe = 27◦ is used for the measurement of Pzz and the
spin angle θS. The errors in two high Q2 bins are shown, one at θe = 34◦ (the 4th

bin, Q2 ≈ 0.23 (GeV/c)2), and one at θe = 45◦ (the 7th bin, Q2 ≈ 0.37 (GeV/c)2).
∆A(∆θe) stands for the errors caused by the tracking error that are independent
across Q2 bins, and ∆A(∆θ∗e) stands for the errors caused by the tracking error that
are correlated between bins. ∆θ∗e is assumed to be 0.2◦ for all bins, while ∆θe is 0.2

◦

for the 34◦ bin and 0.4◦ for the 45◦ bin. The statistical error δAexp are shown for
reference.

it follows that the error in Aexp due to ∆θ∗e is,

∆Aexp(∆θ
∗
e) =

∂Aexp

∂θe
∆θ∗e −

Araw

P 2
zz

∆Pzz(∆θ
∗
e) =

(

∂Aexp

∂θe
− Aexp

Ãexp

∂Ãexp

∂θe

)

∆θ∗e . (4.18)

The variables in Eqs. 4.17 and 4.18 are listed in Tab. 4.5 for two bins θe = 34◦ and

θe = 45◦. Ãexp and
∂Ãexp

∂θe
are measured at θe = 27◦ and are also shown in Tab. 4.5.

It can be seen that at medium Q2 (the θe = 34◦ bin), Aexp is not much larger is

size than Ãexp. In the mean time,
∂Aexp

∂θe
is of similar size as

∂Ãexp

∂θe
. This leads to

strong cancellation in Eq. 4.18. As a result, the effect of correlated reconstruction

error ∆Aexp(∆θ
∗
e) is about half the size of the uncorrelated ∆Aexp(∆θe). At high Q

2,
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∂Aexp

∂θe
becomes small while Aexp is large. Therefore ∆Aexp(∆θ

∗
e) is large. In any case

the statistical uncertainty dominates the reconstruction error by a factor of two to five,

especially at high Q2, where the statistical the uncertainties dominate any tracking

error by a factor of four. Therefore, in the following analysis, the reconstruction error

∆θe will simply be considered independent between Q2 bins and the two sectors, with

all possible correlations ignored.

4.5.2 False Asymmetries

The analysis relies on the assumption that P−
zz = −2× P+

zz. Any deviation from this

assumption causes errors in the measured Pzz, θS, T20 and T21. These errors will be

referred to as errors due to “false asymmetries”.

Let P zz =
P+
zz − P−

zz

3
be the average polarization. Define ∆R as the measure of

the false asymmetry. Then,

P+
zz = P zz(1+∆R), P−

zz = −2P zz(1−0.5∆R), and ∆R =
2

3

(

P−
zz

P+
zz

+ 2

)

. (4.19)

The assumption of equal tensor polarization, P−
zz = −2P+

zz, is equivalent to ∆R = 0.

The measured yields are proportional to, σ± = σ0(1 + P±
zzA

T
d ), where A

T
d is the

theoretical tensor asymmetry given by the models. Therefore, when the assumption

∆R = 0 is violated, the observed asymmetries are,

Araw =
σ+ − σ−
2σ+ + σ−

=
(P+

zz − P−
zz)A

T
d

3 + (2P+
zz + P−

zz)A
T
d

=
P zzA

T
d

1 + P zzAT
d∆R

.

As a result the measured tensor polarization, and its deviation ∆Pzz from P zz is,

Pzz =

P zzÃT
⊥

1+P zzÃT
⊥∆R
− P zzÃT

‖

1+P zzÃT
‖
∆R

ÃT
⊥ − ÃT

‖
=

P zz

1 + P zz∆R(ÃT
‖ + ÃT

⊥)

∆Pzz = Pzz − P zz = P
2

zz∆R
(

ÃT
⊥ + ÃT

‖

)

, (4.20)

where ÃT
‖,⊥ represent the tensor asymmetries in parallel and perpendicular kinematics
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respectively at low Q2, where the normalization to the models is performed 18. At

higher Q2, Pzz is used to compute Aexp from Araw according to Eq. 4.7. It is easy to

show that when ∆R is not zero, the measured Aexp, and the error incurred is,

Aexp =
Araw

Pzz
≈ AT

d

[

1 + P zz∆R(Ã
T
‖ + ÃT

⊥ − AT
d )
]

,

∆Aexp(∆R) = Aexp − AT
d = Pzz∆RA

T (ÃT
‖ + ÃT

⊥ − AT
d ). (4.21)

There are two additional assumptions. First, the vector polarization P ′
z in the

Pzz = −2 state is assumed to be 0. From the definition of Pz = n+ − n−, Pzz =

1 − 3n0, and the constraint n+ + n− + N0 = 1 (Sec. 2.1.3), P ′
z must be small when

P−
zz is highly negative. In fact, the following constraint is always true, |P ′

z| ≤
P−
zz + 2

3
.

Nevertheless, with P−
zz ≈ −1.2 (0.683 × −2 in 2004 and 0.563 × −2 in 2005, as

observed with BLAST ABS, as described in Sec. 4.3.3), |P ′
z| could be as large as

0.25. In addition, the degree of vector polarization on the two vector target states

(Pz, Pzz) = (+,+) and (−,+) are assumed to be equal, i.e., P−
z = −P+

z . Both

assumptions are verified in the following.

Without an independent polarimeter, it is not possible to verify directly the as-

sumption that ∆R = 0. Neither is there any guarantee from the target design prin-

ciples [77]. Nevertheless, it is possible to make indirect estimates of the size of ∆R.

A tensor asymmetry was built between the two target states with positive tensor

polarizations ((Pz, Pzz) = (+,+) and (−,+)),

AT
+ =

σ(+,+,+) + σ(−,+,+)− σ(+,−,+)− σ(−,−,+)

4Σ0

≈ 1

4
(h+ + h−)(P+

z − P−
z )AV

ed +
1

2
(P++

zz − P−+
zz )AT

d

=
1

2
(P++

zz − P−+
zz )AT

d , (4.22)

where σ(h, Pz, Pzz) = σ0 ×
(

1 + hPzA
V
ed + PzzA

T
d

)

, is the cross section in the corre-

sponding helicity-target polarization state combination 19, h± is the beam polarization

18High Q2 data are not used to measure Pzz.
19For example σ(+,+,+) represents the cross section in the state of positive beam helicity h = +,

positive target vector polarization Pz = + and positive target tensor polarization Pzz = +.
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in the + and − helicity states respectively, P+
z , P−

z , stand for the vector polarization

in the two target vector spin states, P++
zz and P−+

zz stand for the tensor polarization in

those two target vector spin states (+,+) and (−,+), whose tensor polarizations are

both positive. Ideally, h− = −h+, P−
z = −P+

z and P++
zz = P−+

zz . AV
ed is the theoretical

asymmetries related to the product of beam helicity and target vector polarization,

and AT
d , again, is the theoretical asymmetry related to target tensor polarization only.

Σ0 is the unpolarized cross section determined by the total counts normalized by the

total charge,

Σ0 =
σ(+,+,+) + σ(−,+,+) + σ(+,−,+) + σ(−,−,+) + σ(+, 0,−2) + σ(−, 0,−2)

6

= σ0 ×
[

1 +
1

6
(h+ + h−)(P+

z + P−
z + P ′

z)A
V
ed +

1

3
(P++

zz + P−+
zz + P−

zz)A
T
d

]

, (4.23)

where σ0 is the theoretical unpolarized cross section (Eq. 2.2) 20.

In the last step of Eq. 4.22, the term proportional to (h+ + h−) is neglected as

the Compton Polarimeter measurements showed that ∆h = (h++h−)/2 = 0.00075±
0.0068 (Sec. 3.1.3). The asymmetries, shown in Fig. 4-16, are fit to Monte Carlo

asymmetries, AMC , to extract ∆P+
zz = (P++

zz − P−+
zz )/2. The procedure is identical

to that described in Sec. 4.3.3. It is found that ∆P+
zz = 0.102 ± 0.016 in 2004 and

∆P+
zz = 0.092± 0.012 in 2005, both of which correspond to

∆P+
zz

P zz

∼ 15%.

∆P+
zz represents the difference in the degree of polarization between the two states

with positive tensor polarization (the two states: (Pz, Pzz) = (+,+) and (−,+)), and

therefore does not provide a direct measurement of ∆R which measures the difference

in polarization of the positive and negative tensor states (the states: Pzz = + and

Pzz = −2). Nevertheless, it does provide a general estimation on the degree of

disparity between different polarization states.

20When ∆R is not zero, Σ0 constructed in this manner has an error of:

Σ0 = σ0 ×
[

1 + ∆RP zzA
T
d

]

.

∆RP zzA
T
d . Given the typical Pzz and AT

d , the error is 3-5%. This error affects vector asymmetry
measurements. This applies to the vector asymmetries in the electro-disintegration channel also,
where AT

d should be taken as the target tensor asymmetry in that channel. This error affects the
∆P+

zz results listed in the text, and with this systematic uncertainty included, one has ∆P+
zz =

0.102± 0.016± 0.005 for 2004 and 0.092± 0.012± 0.005.
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NIKHEF used an ion-extraction polarimeter to measure P+
zz = 0.526± 0.007 and

P−
zz = −1.038 ± 0.014 [80], consistent with ∆R = 0.02. It must be pointed out

that NIKHEF operated with a different set of target spin states, where the positive

tensor state was not simultaneously vector polarized. The VEPP-3 collaboration

assumed a 15% systematic error due to the unknown difference in polarization between

target spin states in their internal target [91], which is incidentally equal to the
∆P+

zz

P zz

discovered here for BLAST deuterium target. It will be assumed that ∆R = 0.15 in

this work. With Pzz ≈ 0.6 and AT
d . 0.3 at the Q2 used for polarization measurement,

the systematic uncertainties induced are ∆Pzz(∆R) = 0.003 for the 2004 data set,

and ∆Pzz(∆R) = 0.019 for 2005.

The effect of the false asymmetry ∆R were also studied by a Monte Carlo simula-

tion, where ed-elastic events with different polarization in the three spin states were

generated but analyzed under the assumption of equal polarization. The difference

between extracted Pzz and the average value assumed in the simulation is consistent

with Eq. 4.20. The difference between the extracted asymmetry Aexp and the true

model value is also consistent with Eq. 4.21. The same Monte Carlo is also used to

study the systematic error in the measured θS caused by the false asymmetry.

There does not seem to be a large difference in the vector polarizations between the

vector plus and minus (Pz = 1 and −1 respectively) states, nor does the tensor minus

state seem be significantly vector polarized. These false asymmetries are calculated

by

A+
h =

σ(+,+,+) + σ(+,−,+)− σ(−,+,+)− σ(−,−,+)

4Σ0

=
1

2
h(P+

z + P−
z )AV

ed,

A−
h =

σ(+, 0,−) + σ(−, 0,−)
2Σ0

= hP ′
zA

V
ed.

Any non-zero value in A+
h indicates non-zero ∆Pz =

1

2
(P+

z + P−
z ), and A−

h reflects

P ′
z. The observed A±

h are also included in Fig. 4-16, which indicate that ∆Pz and P ′
z

are consistent with 0. These false asymmetries were more precisely verified by the

electro-disintegration channel [53], and the results were consistent with zero.
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Figure 4-16: False asymmetries in the 2004 (left) and 2005 (right) data sets. The
tensor asymmetries between the two tensor + states are shown at the top and fit to
Monte Carlo. The difference in the tensor polarization ∆P+

zz is extracted from the fit
and used to estimate the difference in polarization among different target states in
general. In the middle, the helicity only asymmetries for tensor plus states are shown,
which measures the difference in the vector polarization between the two vector plus
states. On the bottom, the helicity only asymmetries for tensor minus states are
shown. The vector polarization for this state should be zero.
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4.5.3 Errors in Pzz and θS

The reconstruction errors in lowQ2 bin cause systematic uncertainties in the measured

polarization and spin orientation. It is easy to show from Eq. 4.5, that, assuming the

reconstruction errors are independent in the left and right sectors, the error in Pzz

caused by the error in the low Q2 electron scattering angle ∆θ̃e is,

∆Pzz(∆θ̃e) =

√

(

∂A⊥

∂θe

)2

+
(

∂A‖

∂θe

)2

∣

∣

∣A⊥
MC − A

‖
MC

∣

∣

∣

∆θ̃e, (4.24)

where ∆θ̃e ≈ 0.2◦ stands for the tracking error in θ̃e in the lowQ2 bins. The systematic

error in spin angle ∆θS(∆θ̃e) is estimated by noticing that the measured spin angle

θS is the root of P
‖
zz(θS)−P⊥

zz(θS) = 0. The analysis procedure implies that the error

∆θS(∆θ̃e) is such that the following holds,

P ‖
zz(θS +∆θS) +

∂P
‖
zz

∂θe
∆θ̃e − P⊥

zz(θS +∆θS)−
∂P⊥

zz

∂θe
∆θ̃e

= P ‖
zz(θS) +

∂P
‖
zz

∂θS
∆θS +

∂P
‖
zz

∂θe
∆θ̃e − P⊥

zz(θS)−
∂P⊥

zz

∂θS
∆θS −

∂P⊥
zz

∂θe
∆θ̃e = 0,

which, assuming, again, the reconstruction errors are independent in the two sectors,

leads to,

∆θS =

√

(

∂P
‖
zz

∂θe

)2

+
(

∂P⊥
zz

∂θe

)2

∣

∣

∣

∂P
‖
zz

∂θS
− ∂P⊥

zz

∂θS

∣

∣

∣

∆θ̃e, (4.25)

where again, ∆θ̃e ≈ 0.2◦. The partial derivative of Pzz over θe is estimated by

∂Pzz/∂θe
Pzz

=
∂Aexp/∂θe

Aexp

, and the partial derivatives
∂P

‖
zz

∂θS
are measured from Fig. 4-

12. The variables in Eqs. 4.24 and 4.25 are tabulated in Tab. 4.6. The error arises

from reconstruction error is 0.02 in Pzz and about 0.2◦ in θS.

The effects were verified by refitting both polarization Pzz and θS with the Q2

shifted by the amount corresponding to ∆θ̃e = 0.2◦. One can shift the Q2 in each

sector higher or lower, giving a total of four directional combinations. Since there are

two Q2 bins in each sector used for the normalization and the tracking errors are not
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2004 2005
kinematics ‖ ⊥ ‖ ⊥
AMC −0.17 0.21 −0.40 0.025
∂A

∂θe
(/◦) −0.020 0.020 −0.036 0.008

∂A/∂θe
A

(/◦) 0.1 0.1 0.1 0.3

∂Pzz
∂θS

(/◦) 0.03 −0.07 0.34 0.02

Pzz 0.683 0.563

∆Pzz(∆θ̃e) 0.02 0.02

∆θS(∆θ̃e) (
◦) 0.20 0.12

Table 4.6: Variables in Eqs. 4.24 and 4.25 and the resulting systematic uncertainty
in Pzz and θS due to tracking error in θe.

2004 2005
Q′
l Q′

r ∆Pzz ∆θS ∆Pzz ∆θS
Ql +∆Ql Qr +∆Qr -0.008 −0.04◦ -0.008 +0.09◦

Ql +∆Ql Qr −∆Qr -0.011 +0.18◦ -0.008 +0.10◦

Ql −∆Ql Qr +∆Qr +0.011 −0.18◦ +0.007 −0.08◦
Ql −∆Ql Qr −∆Qr +0.008 +0.04◦ +0.007 −0.07◦

Table 4.7: Systematic errors in Pzz and θS caused by tracking errors, estimated by
shifting the Q2 of measured asymmetry data. ∆Q2 are determined for the low Q2

bins by
∂Q2

∂θ̃e
∆θ̃e where ∆θ̃e = 0.2◦ is the systematic error in electron scattering angle

discussed in Sec. 4.5.1. Asymmetry data points are shifted by ±∆Q2 and Pzz and θS
refit. All four possible directional combinations in the two sectors are performed and
the changes in Pzz and θS are shown.

considered strongly correlated between the Q2 bins, only the second bin, which has

larger impact on Pzz and θS, was shifted. The effects on Pzz and θS are tabulated

in Tab. 4.7. All the methods give consistent estimations on the uncertainties in Pzz

and θS. ∆Pzz and ∆θS estimated in Tab. 4.7 are slightly smaller than those shown

in Tab. 4.6 obtained from analytical estimations: Eqs. 4.24 and 4.25. This is because

Eqs. 4.24 and 4.25 assume the reconstruction error in both low Q2 bins are perfectly

correlated while Tab. 4.7 assumes the two bins are independent.

Tab. 4.8 lists the major systematic errors in Pzz and θS. Pzz measured from

A⊥
raw − A

‖
raw is not sensitive to the errors in the spin angle θS, as can be seen from
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Fig. 4-12. The effect from the false asymmetry on Pzz is discussed in Sec. 4.5.2, while

its effect on θS is studied with Monte Carlo. The total uncertainties in spin angle

∆θS is . 0.5◦ for both data sets.

2004 2005
source ∆Pzz ∆θS ∆Pzz ∆θS
Statistics 0.015 0.35◦ 0.013 0.42◦

∆θe 0.015 0.20◦ 0.018 0.12◦

∆θS 0.004 0.002
∆R 0.002 0.10◦ 0.019 0.01◦

theory 0.034 0.10◦ 0.028 0.10◦

total 0.040 0.43◦ 0.040 0.45◦

Table 4.8: Systematic errors in Pzz and θS from various sources. The statistical
errors are listed too for comparison. The effect of tracking error ∆θ̃e is estimated
with Eqs. 4.24 and 4.25. The effect from the false asymmetry on Pzz is discussed
in Sec. 4.5.2, while its effect on θS is studied with Monte Carlo. The theoretical
uncertainties are discussed in Sec. 4.6.

There are several measurements on the spin angle. Several surveys were performed

with Hall Probes. Apart from the elastic electron deuteron scattering analyzed in this

work, the elastic electron proton scattering was used to measure the spin angle with

a similar procedure for the hydrogen target data taken in the winter of 2004 between

the two deuterium data sets [83].

The ed-elastic tensor asymmetry measures the average spin angle for all the ed-

elastic events originated from the entire length of the target 21. To better compare

the surveyed spin angle profiles to the average spin angle measured by ed-elastic and

ep-elastic asymmetries, a z-vertex weighted average spin angle
〈

θprofS

〉

is calculated

for each survey using Eq.4.10.

Average spin angle from all the measurements are tabulated in Tab. 4.9. A few

observations are in order. First, the agreement between the three holding field surveys

are less than ideal. More importantly, a strict decreasing trend in time is obvious. For

example, the Jan. 2005 survey for the nominal 32◦ setup is 1.3◦ higher than the March

2006 survey, and the July 2004 survey for the nominal 47◦ setup is 0.8◦ higher than

21Though the technique can be applied to bins along z-vertex, as shown in Fig. 3.2.2, the statistical
precision is lower for individual z-bin.
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2004 2005
Holding field map July 2004 47.0± 1.0◦

Holding field map Jan. 2005 31.3± 1.0◦ 46.8± 1.0◦

Holding field map June 2005 30.7± 1.0◦ 46.2± 1.0◦

Holding field map Mar. 2006 30.0± 0.5◦

H(e, e′p) 45.8± 0.8± 2◦

D(e, e′d) (this work) 31.7± 0.5◦ 47.8± 0.5◦

Table 4.9: Average spin angle from various measurements. For the four holding field
maps, the D(e, e′d) events were used to weight the surveyed profile along the target
cell. The strictly decreasing trend from July 2004 to March 2006 holding field sur-
veys is obvious, which indicates unknown systematic errors. The 45.8◦ value measured
H(e, e′p) vector asymmetry suffers large systematic error of ±2◦, due to its high sen-
sitivity to tracking error in electron scattering angle θe. The ±0.5◦ uncertainty shown
for the spin angles measured by the tensor D(e, e′d) asymmetry includes all statisti-
cal and systematic errors (Tab. 4.8). The Jan. 2005 survey is used in this work and
corrected to match the D(e, e′d) measured spin angle according to Eq. 4.9. This spin
angle map requires the least correction for both 32◦ and 47◦ nominal configuration.

the June 2005 results. This indicates unknown systematics 22. In addition, in order

to make room for the apparatus, all the holding field surveys were taken with the

detector frame open. On the other hand, the D(e, e′d) and H(e, e′p) measurements

were truly real time and in-situ. Finally, the spin angle measured by the ep-elastic

channel during the hydrogen target runs suffered large sensitivity to the systematic

reconstruction errors in θe. The systematic error in θS measured by ep-elastic channel

is estimated to be about ±2◦, even though the systematic error in θe itself is estimated

to be only 0.2-0.4◦. This uncertainty is estimated with a procedure similar to Eq. 4.25.

The reason for such a large sensitivity is that
∂Pz
∂θS

(with θS standing for the hydrogen

target spin angle, and Pz standing for the hydrogen target polarization) in both

parallel and perpendicular kinematics are positive and similar in size (Fig.3-11 in

Ref. [83]), resulting in a small denominator in Eq. 4.25. On the contrary, for ed-

elastic, the two partial derivatives
∂pzz
∂θS

are always opposite in signs. Therefore, the

mean spin angles measured by ed-elastic tensor asymmetry are the most accurate,

reliable and robust.

22The conjecture of misalignment in the Hall Probes could not explain such a monotonic trend,
because the alignment error should be independent between surveys taken at different times.
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As pointed out at the end of Sec. 4.3.3, there are two important approximations

in the analysis procedure to extract Pzz and θS. First, the Monte Carlo simulation

assumed constant spin angle along the cell rather than the measured vertex depen-

dent holding field map. In addition, The Monte Carlo simulated asymmetries were

parameterized into polynomials in order to facilitate the fitter procedures. Special

care has been taken to verify that the impact of these approximations are insignificant

compared to the statistical uncertainty and other systematic errors.

If the proper spin angle profile was taken into consideration in the Monte Carlo,

then it must hold that the Pzz obtained with Eq. 4.3 in the parallel and perpendicular

kinematics are the same,

P⊥
zz

P
‖
zz

=
A⊥
raw/

〈

A⊥
MC(θS)

〉

A
‖
raw/

〈

A
‖
MC(θS)

〉 = 1, (4.26)

where 〈.〉 stands for the average operator for given Q2 bin. Since only the average spin

angle 〈θS〉 was used in the simulations, 〈AMC(θS)〉 is approximated by AMC(〈θS〉),
and Eq. 4.26 becomes,

P⊥
zz(〈θS〉)

P
‖
zz(〈θS〉)

=
A⊥
raw/A

⊥
MC(〈θS〉)

A
‖
raw/A

‖
MC(〈θS〉)

≈ A⊥
raw/

〈

A⊥
MC(θS)

〉

A
‖
raw/

〈

A
‖
MC(θS)

〉 ×
[

1 +
1

2

(

d2A
‖
raw/dθ2S

A
‖
MC

− d2A⊥
raw/dθ

2
S

A⊥
MC

)

∆θ2S

]

= 1, (4.27)

where ∆θ2S = 〈θ2S〉 − 〈θS〉2 is the Mean Square Error (MSE) of θS
23. Denote,

f(θS) =
A⊥
raw/

〈

A⊥
MC(θS)

〉

A
‖
raw/

〈

A
‖
MC(θS)

〉 . Then Eq. 4.26 can be rewritten as,

f(〈θS〉) = 1, (4.28)

and the true 〈θS〉 is the root of this equation.

23The approximation that 〈A(θS)〉 = A(〈θS〉) + 1
2A

′′(〈θS〉)∆θ2
S , is used, where A′′ is the second

derivative of A over θS . The first order term A′(〈θS〉) 〈θS − 〈θS〉〉 is zero.
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By using only constant spin angles in the Monte Carlo, the spin angle obtained

from tensor ed-elastic asymmetries is in fact the solution to the approximation Eq. 4.27

rather than Eq. 4.28. Let δθS be the error introduced by this approximation, 〈θS〉+δθS
is then the root of Eq. 4.27:

f(〈θS〉+ δθS)×
[

1 +
1

2

(

d2A
‖
raw/dθ2S

A
‖
MC

− d2A⊥
raw/dθ

2
S

A⊥
MC

)

∆θ2S

]

= 1.

It immediately follows by Taylor expansion that,

f(〈θS〉) + f ′(〈θS〉)δθS = 1− 1

2

(

d2A
‖
raw/dθ2S

A
‖
MC

− d2A⊥
raw/dθ

2
S

A⊥
MC

)

∆θ2S.

Using Eq. 4.28,

f ′(〈θS〉)δθS = −1

2

(

d2A
‖
raw/dθ2S

A
‖
MC

− d2A⊥
raw/dθ

2
S

A⊥
MC

)

∆θ2S,

which yields,

δθS ≤
1

2|f ′(〈θS〉)|

(∣

∣

∣

∣

∣

d2A
‖
raw/dθ2S

A
‖
MC

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

d2A⊥
raw/dθ

2
S

A⊥
MC

∣

∣

∣

∣

)

∆θ2S. (4.29)

The various terms in Eq. 4.29, were estimated using Monte Carlo or data: AMC ∼ 0.5,

f ′ ∼ 10 rad−1, and

∣

∣

∣

∣

∣

d2A
‖,⊥
raw

dθ2S

∣

∣

∣

∣

∣

∼ 1 rad−2 24. ∆θS ∼ 10−3 rad2 is estimated using the

surveyed holding field map. These yield, δθS ∼ 0.05◦ which is one order of magnitude

smaller than the statistical uncertainty.

The conclusion of the above analysis was confirmed by another approach where

the analysis procedure in Sec. 4.4 is applied to the Q2 bins used for the normalization.

The shape of the surveyed spin angle profile was incorporated through Eq. 4.9. The

24Notice that only rough estimations of these quantities are needed, and therefore it is not a
concern that the true value of 〈θS〉 is not known exactly.
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T20 and T21 obtained are compared to model calculations. Define

χ2 =
1

2

2
∑

1

[

(

T20 − Tmodel
20

∆T20

)2

+

(

T21 − Tmodel
21

∆T21

)2
]

, (4.30)

where ∆T2i =
√

δT 2
2i +∆T2i(∆θe)2, in which, δT2i is the statistical uncertainty, and

∆T2i(∆θe) is the systematic uncertainty in T20 and T21 caused by tracking errors.

The systematic errors caused by uncertainties in Pzz and θS are not included. The

sum runs over the first two Q bins, which are below 2 fm−1. The degree of freedom

is 2, since there are four data points to fit for two parameters. A grid of steps 0.1◦

in 〈θS〉, and 0.001 in Pzz was searched, and it was confirmed that χ2 for Abbott’s

parameterization III was indeed minimized by the Pzz and θS obtained by comparing

data to Monte Carlo.

It can therefore be concluded that the Monte Carlo with constant spin angle

are sufficient in the determination of Pzz and θS. The errors introduced by not

considering the spin angle variation along the cell are much smaller than the statistical

uncertainties.

One million events were simulated in each Monte Carlo simulation. Compare to

the total number of two to three hundred thousand events collected in experiment,

the statistical error in the Monte Carlo is very small. In addition, the use of low-

discrepancy sequence (Sec. 3.5) further reduces the statistical error in the Monte

Carlo. Therefore the polynomial fits described in Sec. 4.1 were very well constrained,

especially at the low Q2, where the normalization to model was performed.
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4.5.4 Errors in T20 and T21

T20 and T21 are calculated from the experimental asymmetriesAexp. SinceAexp =
Araw

Pzz
,

the uncertainties in Pzz propagate into Aexp,

∆Aexp = −
Araw

P 2
zz

∆Pzz = −
Aexp

Pzz
∆Pzz.

As discussed in Sec. 4.5.3, the error in Pzz includes contributions from several sources:

1) The statistical uncertainty δPzz; 2) The error caused by the tracking error in the

electron scattering angle, ∆θ̃e, in the low Q2 bins; 3) The error caused by uncertainty

in spin angle ∆θS; 4) The error caused by the false asymmetry ∆R. The effect of ∆R

is correlated across all Q2 bins, and is treated separately in Eq. 4.21. ∆Aexp from the

other three sources can be determined by,

∆Aexp(δPzz) = −Aexp

Pzz
δPzz (4.31)

∆Aexp(∆θS) = −Aexp

Pzz
∆Pzz(∆θS) (4.32)

∆Aexp(∆Pzz) = −Aexp

Pzz
∆Pzz(∆θ̃e) (4.33)

where θ̃e is the electron scattering angle in the low Q2 bins used for the normalization

as oppose to the scattering angle at which T20 and T21 are measured. The signs are

preserved in order to properly take into consideration the correlation between the left

and right sectors in Eqs. 4.31 and 4.32.

The kinematic coefficients are functions of target spin direction θ∗ relative to the

three-momentum transfer q. θ∗ is calculated from (θq, φq) and θS, and the direction

of the three-momentum transfer (θq, φq) is in turn a function of θe and φe. Therefore,

the systematic errors in the kinematic coefficients c(θ∗), defined in Sec. 4.4 below

Eq. 4.8, have contributions from both ∆θe and ∆θS and are estimated as,

∆c(∆θe) =
∂c

∂θ∗
∂θ∗

∂θe
∆θe, and ∆c(∆θS) =

∂c

∂θ∗
∂θ∗

∂θS
∆θS,

where ∆θe and ∆θS are the uncertainty in the reconstructed electron scattering angle
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and spin angle respectively.

The systematic uncertainties in T20 and T21 are estimated through error propaga-

tions in Eqs. 4.34 to 4.38,

∆T20(∆θe) =
1

c⊥21c
‖
20 − c

‖
21c

⊥
20

{

[

c⊥21
(

∆A‖
exp(∆θe)− T20∆c

‖
20(∆θe)− T21∆c

‖
21(∆θe)

)]2

+
[

c
‖
21

(

−∆A⊥
exp(∆θe) + T20∆c

⊥
20(∆θe) + T21∆c

⊥
21(∆θe)

)]2
}1/2

, (4.34)

∆T20(∆θS) =
1

c⊥21c
‖
20 − c

‖
21c

⊥
20

{

c⊥21
(

∆A‖
exp(∆θS)− T20∆c

‖
20(∆θS)− T21∆c

‖
21(∆θS)

)

+c
‖
21

(

−∆A⊥
exp(∆θS) + T20∆c

‖
20(∆θS) + T21∆c

‖
21(∆θS)

)}

, (4.35)

∆T20(δPzz) =
c⊥21∆A

‖
exp(δPzz)− c

‖
21∆A

⊥
exp(δPzz)

c⊥21c
‖
20 − c

‖
21c

⊥
20

, (4.36)

∆T20(∆Pzz) =
c⊥21∆A

‖
exp(∆Pzz)− c

‖
21∆A

⊥
exp(∆Pzz)

c⊥21c
‖
20 − c

‖
21c

⊥
20

, (4.37)

∆T20(∆R) =
c⊥21∆A

‖
exp(∆R)− c

‖
21∆A

⊥
exp(∆R)

c⊥21c
‖
20 − c

‖
21c

⊥
20

, (4.38)

where ∆A
‖,⊥
exp(∆θe), ∆A

‖,⊥
exp(∆θS), ∆A

‖,⊥
exp(δPzz), ∆A

‖,⊥
exp(∆Pzz), and ∆A

‖,⊥
exp(∆R) are

determined by Eqs. 4.17, 4.32, 4.31, 4.33, and 4.21 respectively 25. The errors ∆θe

are assumed to be independent in each bin and between the two sectors while the

errors in θS and Pzz are 100% correlated across the entire Q2 acceptance and the two

sectors. Similar rules apply to T21.

The effect of ∆θS is verified by reanalysis of the data assuming a θS value which

differs by 0.5◦ from the measured values. The effect of ∆R is verified with Monte

Carlo, where ed-elastic events with different polarization in the three tensor states

were generated but analyzed under the assumption of equal polarization (Sec. 4.5.2).

The resulting T20 and T21 were compared to the model calculation used in the event

generation and the differences are consistent with the results of the analytical esti-

mation in Eq. 4.38.

The error ∆T20(∆θe) is considered to be independent between different Q2 bins.

25Though it is A∗ directly used in Rq. 4.14, the systematic uncertainties in A∗ are equal to those
of Aexp which is the result of the definition of A∗ (Eq. 4.11).
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Although there could be reconstruction errors that are correlated over the entire ac-

ceptance, Sec. 4.5.1 showed that the effect of such errors is small at low to medium Q2.

At high Q2, the statistical error dominates in any case. All other errors, ∆T20(∆θS),

∆T20(δPzz), ∆T20(∆Pzz), and ∆T20(∆R), are correlated between bins and sectors.

The systematic errors are tabulate in Tab. 4.10.

The systematic uncertainties in the T20 measured by the procedure described in

Sec. 4.4.3 is easily estimated through Eq. 4.15,

∆T
‖,⊥
20 =

∆A
‖,⊥
exp − T20∆c‖,⊥20 − T21∆c

‖,⊥
21 − T22∆c

‖,⊥
22

c
‖,⊥
20

. (4.39)

∆T
‖,⊥
20 are then combined accordingly to Eq. 4.16. The results are tabulated in

Tab. 4.11.

The subtraction of T21 using world data in Eq. 4.15 introduced an additional

systematic error. A 10% error in T21 is assumed. This estimation is consistent with

Ref. [72], and consistent with the dispersion among the three parameterizations of

the world data. Within one statistical standard deviation, the measured T21 from the

data (Sec. 4.4.2), are also consistent with the parameterizations of world data within

±10%.
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2004

T20 δT20
∆T20 T21 δT21

∆T21
∆θe ∆θS δPzz ∆Pzz ∆R norm ∆θe ∆θS δPzz ∆Pzz ∆R norm

-0.541 0.033 0.023 -0.030 0.015 0.024 -0.053 0.015 0.010 -0.015 0.007 0.002
-0.655 0.030 0.023 -0.030 0.023 0.025 -0.089 0.016 0.012 -0.018 0.012 0.002
-0.833 0.036 0.022 -0.034 0.015 0.012 0.033 0.035 -0.152 0.021 0.013 -0.021 0.001 0.001 0.019 0.003
-0.875 0.042 0.020 -0.033 0.018 0.014 0.043 0.040 -0.120 0.027 0.013 -0.023 0.002 0.002 0.029 0.004
-1.075 0.047 0.035 -0.032 0.021 0.016 0.055 0.047 -0.196 0.035 0.027 -0.026 0.003 0.002 0.043 0.006
-1.191 0.061 0.027 -0.027 0.024 0.018 0.063 0.053 -0.268 0.052 0.024 -0.027 0.004 0.003 0.059 0.008
-1.319 0.063 0.019 -0.022 0.026 0.020 0.065 0.057 -0.419 0.068 0.020 -0.028 0.005 0.004 0.076 0.011
-1.285 0.089 0.011 -0.017 0.027 0.021 0.059 0.060 -0.55 0.11 0.014 -0.028 0.007 0.005 0.088 0.015
-1.12 0.13 0.004 -0.011 0.026 0.020 0.043 0.058 -0.44 0.16 0.006 -0.025 0.007 0.006 0.085 0.017
-1.18 0.17 0.002 -0.004 0.023 0.018 0.024 0.051 -0.53 0.20 0.002 -0.023 0.009 0.007 0.070 0.020
-0.91 0.21 0.004 -0.000 0.017 0.013 0.010 0.038 -0.71 0.22 0.005 -0.016 0.009 0.007 0.043 0.019

2005

T20 δT20
∆T20 T21 δT21

∆T20
∆θe ∆θS δPzz ∆Pzz ∆R norm ∆θe ∆θS δPzz ∆Pzz ∆R norm

-0.548 0.021 0.015 0.019 0.002 0.029 -0.064 0.010 0.004 0.009 0.000 0.004
-0.645 0.020 0.016 0.022 -0.004 0.034 -0.076 0.011 0.006 0.012 -0.001 0.005
-0.775 0.027 0.018 0.027 0.019 0.017 -0.014 0.041 -0.105 0.017 0.007 0.016 0.003 0.003 -0.005 0.007
-0.914 0.036 0.018 0.030 0.022 0.020 -0.027 0.047 -0.125 0.025 0.009 0.020 0.004 0.004 -0.011 0.009
-1.020 0.045 0.036 0.034 0.025 0.023 -0.047 0.055 -0.173 0.037 0.022 0.026 0.006 0.005 -0.022 0.012
-1.247 0.073 0.033 0.037 0.029 0.026 -0.072 0.062 -0.247 0.071 0.027 0.033 0.008 0.007 -0.042 0.017
-1.22 0.10 0.026 0.036 0.030 0.028 -0.094 0.066 -0.17 0.13 0.028 0.040 0.009 0.009 -0.067 0.020
-1.35 0.17 0.016 0.036 0.032 0.029 -0.110 0.068 -0.56 0.24 0.027 0.050 0.012 0.011 -0.103 0.027
-1.36 0.20 0.006 0.030 0.030 0.028 -0.100 0.064 -0.78 0.34 0.023 0.056 0.014 0.013 -0.124 0.029
-1.11 0.25 0.007 0.024 0.026 0.024 -0.074 0.056 -1.09 0.60 0.021 0.070 0.017 0.016 -0.151 0.037
-0.20 0.33 0.010 0.009 0.018 0.016 -0.021 0.038 -0.6 1.3 0.025 0.071 0.015 0.014 -0.010 0.032

Table 4.10: Systematic errors in T20 and T21. The columns are the systematic errors calculated from Eqs 4.34 to 4.38. ∆θe:
Eq. 4.34; ∆θS: Eq. 4.35; δPzz: Eq. 4.36; ∆Pzz: Eq. 4.37; ∆R: Eq. 4.38. The normalization uncertainties (“norm”) are
discussed in detail in Sec. 4.6. The polarization related errors are not applicable to the first two bins as they are used for the
normalization themselves. The sign of the errors are preserved whenever possible for the combination of the data sets. The
values and statistical errors in T20 and T21 are included for comparison.
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2004

T20 δT20
∆T20

∆θe ∆θS δPzz ∆Pzz ∆R ∆T21 norm

-0.557 0.014 0.010 -0.001 -0.007 0.012 0.021
-0.646 0.013 0.010 -0.000 -0.011 0.014 0.025
-0.770 0.017 0.010 -0.002 0.013 0.010 -0.016 0.017 0.030
-0.906 0.021 0.010 -0.002 0.015 0.012 -0.022 0.019 0.034
-1.064 0.026 0.020 -0.002 0.018 0.014 -0.029 0.021 0.040
-1.169 0.038 0.018 -0.002 0.020 0.016 -0.039 0.022 0.045
-1.251 0.048 0.014 -0.005 0.023 0.018 -0.046 0.019 0.051
-1.212 0.076 0.020 -0.005 0.024 0.019 -0.051 0.016 0.054
-1.12 0.12 0.005 -0.004 0.024 0.019 -0.041 0.006 0.048
-1.17 0.16 0.002 -0.002 0.021 0.017 -0.041 0.006 0.048
-0.93 0.21 0.004 -0.001 0.018 0.014 -0.025 0.002 0.039

2005

T20 δT20
∆T20

∆θe ∆θS δPzz ∆Pzz ∆R ∆T21 norm

-0.554 0.014 0.011 0.005 0.001 0.010 0.023
-0.654 0.013 0.012 0.005 -0.003 0.012 0.027
-0.783 0.016 0.012 0.007 0.015 0.014 -0.009 0.014 0.032
-0.935 0.021 0.012 0.008 0.017 0.016 -0.016 0.017 0.037
-1.034 0.025 0.022 0.008 0.019 0.018 -0.027 0.019 0.042
-1.242 0.039 0.019 0.008 0.022 0.020 -0.039 0.021 0.047
-1.311 0.055 0.015 0.010 0.024 0.022 -0.054 0.020 0.052
-1.241 0.093 0.009 0.007 0.024 0.023 -0.059 0.022 0.053
-1.20 0.12 0.005 0.004 0.023 0.021 -0.054 0.021 0.050
-0.90 0.16 0.005 0.001 0.021 0.019 -0.041 0.015 0.045
-0.17 0.28 0.007 -0.001 0.016 0.014 -0.020 0.006 0.034

Table 4.11: Systematic errors in single T20 Extraction discussed in Sec. 4.4.3.
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4.6 Normalization Uncertainties

Due to the lack of independent tensor polarimetry, the tensor polarization must be

extracted by comparing the data at low Q2 to theoretical or phenomenological models

(Sec. 4.3.3). This procedure introduces an uncertainty due to the inaccuracy of the

theoretical model used for the normalization.

4.6.1 World Data

On average the data used for normalization is at Q = 1.96 fm−1. There are two

prior measurements at Q = 2.03 fm−1 which are very close to the normalization

points. The values for T20(θe = 70◦) are −0.59± 0.13 measured by Bates in 1984 [30]

and −0.713 ± 0.082 ± 0.036 obtained by NIKHEF collaboration in 1999 [37]. The

difference between the two measurements is 0.12 which is about 1-σ from each other.

The weighted average is −0.674 ± 0.073 which is a ±10% accuracy. additionally, in

the region of 1.5 < Q < 3 fm−1, all the NIKHEF data with polarized target and ion-

extraction polarimeter [36, 37] are consistently larger in size (more negative) than

the Bates recoil polarimetry measurement in 1984 [30].

JLab T20 collaboration performed three global parameterizations of world elec-

tron deuteron elastic scattering data published up to 2000 (Sec. 2.3.3) [61]. The three

form factors and T20 at Q = 1.96 fm−1 calculated from the three parameterizations

are shown in Tab. 4.12. The uncertainties in the fits give another estimation of the

errors in the normalization. The error in T20 from parameterization I and III are

both about 6% by adding the errors in form factors independently 26. The three

parameterizations give different T20 value at this Q also. The absolute value given by

parameterization III is larger than parameterization II but smaller than parameteri-

zation I. The dispersion between the three parameterizations is about ±5%.

Parameterization I is refit with Bates-84 or NIKHEF-96/99 data excluded, to

judge the impact on the parameterizations by the difference between these data sets.

26At low Q2, the cross section is dominated by G2
C +

8

9
G2

Q. Therefore, the cross section data

induce strong correlation between the errors in GC and GQ.
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GC GC GC T20 χ2

Parameterization I 0.177± 0.001 0.364± 0.006 5.4± 0.4 −0.607 1.5
Parameterization II 0.178 0.372 5.0 −0.563 1.8
Parameterization III 0.180± 0.001 0.371± 0.005 5.3± 0.3 −0.589 1.5
I with Bates-84 excluded 0.177± 0.001 0.363± 0.006 5.6± 0.4 −0.627 1.2
I with NIKHEF excluded 0.179± 0.001 0.364± 0.006 4.7± 0.4 −0.534 1.2

Table 4.12: Parameterization I refit with Bates-84 or NIKHEF-96/99 data excluded.
GC , GM , GQ and T20 at Q = 1.96 fm−1 are shown as well as the reduced χ2.

The results are also listed in Tab. 4.12. The exclusion of either data set results in

significant change in the calculated T20 value. T20 from these two fits, one excludes

Bates-84 data while the other excludes all NIKHEF data differ by 15%, or ±8% about

their average.

Significant discrepancies exist between the cross section measurements by Mainz [22]

and Saclay [26] in the region of Q ≈ 1 ∼ 2 fm−1 [60]. For example at Q2 = 3.96 fm−2

and θe = 90◦, Mainz measured
dσ

dΩ
= 0.00384± 0.00006×10−30 cm−2/sr, while Saclay

measured
dσ

dΩ
= 0.003417± 0.000058×10−30 cm−2/sr. The difference is about 10%

and larger than 5-σ. As pointed out in Sec. 2.3.3, Abbott’s parameterizations [61]

favored Saclay data and excluded some of the Mainz data points. This inconsistency

further limits the accuracy of the parameterizations at this Q neighborhood.

To summarize, the world data on deuteron form factors at Q ∼ 2 fm−1 are hardly

satisfactory. The two direct T20 measurements provide only ±10% level constraint

and the consistency is only marginal. The prediction by parameterizations of world

data have ±6% uncertainty. The difference between the three parameterizations is

±5%. Excluding Bates or NIKHEF data shifts the parameterization by 7-8%. In

conclusion, the accuracy of T20 at about 2 fm−1 given by the world data is at best

±5%, and the discrepancy in Mainz and Saclay cross section data presents additional

difficulties in precise determination of T20 at this Q2 using world data. The world

data and a few theoretical calculations at Q ≈ 2 fm−1 are presented in the top left

panel of Fig. 4-17.
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4.6.2 Theoretical Calculations

There are many theoretical models on the deuteron structure. Tab. 4.13 lists several

important predictions by an array of models: 1) The static deuteron electric-magnetic

moments, and the quadrupole moment. These values are obtained by extrapolating

the form factors GC , GM and GQ to Q = 0; 2) The position Q0
C of the first node

in GC , the momentum transfer Qmin where T20 reaches its minimum, as well as the

minimum value Tmin
20 ; 3) T20 and T21 evaluated at (Q = 1.96 fm−1, θe = 70◦) 27. In

principle, the form factors GC , GM and GQ, when extrapolated to Q = 0, should

be equal to the static charge, magnetic and quadrupole moment respectively. How-

ever, it is interesting to note that despite the tremendous effort, none of the theories

reproduce the static magnetic and quadrupole moment of deuteron, as can be seen

from Tab. 4.13. The three parameterizations, on the other hand, are constrained

to reproduce the experimental value of static moments [61]: µd = 1.714
Mp

Md

µd and

Qd = 25.83 M−2
d .

Some of the model predictions in GM differ significantly from the experimental

data. As discussed in Sec. 2.1.3, neglecting the GM contribution, T̃20 defined by

Eq. 2.15 reaches its minimum of −
√
2 when 2ηGQ/3GC = 1. The difference between

the actual minimum value of T20 and −
√
2 is caused by the non-zero value of GM .

Therefore Tmin
20 in Tab. 4.13 is sensitive to GM at Qmin. To quantify the effect of the

model errors on the magnetic form factor, the parameterization III of world data was

used to replace the model calculation of GM in several models 28 to calculate T20 from

Eq. 2.9,

T20(Q
2, θe) = −

1√
2S

[

8

3
ηGCGQ +

8

9
η2G2

Q +
1

3
η

[

1 + 2(1 + η) tan2
θe
2

]

G∗
M

2

]

,

with GC and GQ calculated from the model, while G∗
M represents the magnetic form

27The choice of θe = 70◦ is simply by convention. Since the very first T20 measurements carried
out by Bates collaboration in 1984 were at θe = 70◦, it has been customary to correct the T20 values
measured at different θe to 70◦ in order to compare the data. The correction is very small, typically
about one percent of T20.

28All three form factors are provided in these three model while the value of form factors must be
calculated from other observables in other models. The extrapolation to static property for other
models thus are not as reliable.
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factor calculated from Parameterization III of world data. The results are also listed

in Tab. 4.13. It can be seen that the effect of model errors in GM is indeed small. The

location, Qmin, of the minimum in T20 is shifted by ≤ 0.05 fm−1, and the minimal

value Tmin
20 itself is changed by a few percent. At 1.96 fm−1 where the normalization

to model takes place, the effect is typically 0.2%.
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theory
GC GM GQ Q0

C Qmin Tmin
20 T20 T21 Pzz θS χ2 Pzz θS χ2

(Q = 0) (fm−1) (1.96fm−1, 70◦) 2004 setup 2005 setup

Abbott I [61] 1.000 1.714 25.83 4.215 3.175 -1.240 -0.605 -0.084 0.658 31.7◦ 0.93 0.557 47.5◦ 0.57
Abbott II 1.000 1.714 25.83 4.145 3.255 -1.240 -0.565 -0.080 0.717 31.7◦ 0.81 0.589 47.6◦ 0.48
Abbott III 1.000 1.714 25.83 4.245 3.305 -1.229 -0.589 -0.083 0.683 31.7◦ 0.95 0.563 47.7◦ 0.54
Arenhövel [42, 92] a 1.000 1.765 26.08 4.235 3.245 -1.219 -0.572 -0.082 0.709 31.7◦ 0.67 0.585 47.5◦ 0.48

(G∗
M) 3.275 -1.259 -0.573 -0.078 0.709 31.8◦ 0.93 0.580 47.7◦ 0.51

van Orden [49] a 1.000 1.755 23.97 4.145 3.325 -1.207 -0.518 -0.075 0.796 31.7◦ 0.95 0.635 47.6◦ 0.51
(G∗

M) 3.335 -1.229 -0.519 -0.072 0.796 31.8◦ 1.2 0.637 47.7◦ 0.51
Schiavilla(IA) [45, 46] 0.999 1.622 24.18 4.845 3.655 -1.274 -0.503 -0.053 0.765 31.3◦ 1.6 0.637 48.2◦ 1.1
Schiavilla(+MEC) 0.999 1.618 24.95 4.115 3.275 -1.284 -0.558 -0.059 0.698 31.5◦ 1.2 0.578 48.2◦ 0.51

(G∗
M) 3.255 -1.246 -0.557 -0.077 0.725 31.7◦ 0.83 0.582 47.9◦ 0.46

PWD [48, 93] 0.997 1.709 24.93 4.205 3.335 -1.261 -0.553 -0.074 0.736 31.5◦ 1.0 0.607 47.8◦ 0.52
(G∗

M) 3.285 -1.191 -0.541 -0.081 0.765 31.6◦ 0.65 0.627 47.2◦ 0.46
Krutov [94] 0.998 1.675 24.45 4.245 3.375 -1.313 -0.535 -0.065 0.723 31.5◦ 1.7 0.597 48.4◦ 0.73

(G∗
M) 3.345 -1.254 -0.534 -0.071 0.746 31.6◦ 1.1 0.599 48.2◦ 0.57

Tjon [95] 1.000 1.708 24.48 4.605 3.555 -1.253 -0.505 -0.056 0.788 31.5◦ 1.8 0.648 47.9◦ 1.0
LP2 [96] 3.365 -1.282 -0.547 -0.004 0.568 29.8◦ 5.4 0.470 52.9◦ 1.4
Buchmann [97] 3.035 -1.295 -0.649 -0.088 0.613 31.8◦ 2.1 0.504 47.9◦ 1.0
Phillips χPT [98] b 24.97 -0.554 -0.080
χPT c 25.16 -0.566 -0.082

aValue of static moments provided by the theorist.
bWith MMD nuclear form factor.
cWith Nijmegen nuclear form factor.

Table 4.13: Deuteron form factors from various theoretical models. The χPT calculation is done with both MMD and NIJMEGEN
nucleon form factors. The static moments are extrapolated from the calculation for each model, except for the models by Arenhövel
and Van Orden where the theorists provided the model value of µd and Qd. (G∗

M) stands for corresponding models with Abbott
parameterization III replacing the model prediction of magnetic form factor. Both BLAST data sets are fit to the models for Pzz
and θS.
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4.6.3 The Qd Corrections

At low Q2, T20 is dominated by the interference between GC and GQ. As the static

quadrupole moment of deuteron is measured with fairly high accuracy, attempts can

be made to correct for the discrepancy between the extrapolated GQ(0) and the

measured static quadrupole moment Qd in an ad hoc manner. That is, to correct the

quadrupole form factor GQ(Q),

G∗
Q(Q) = G0

Q(Q) + ∆Qd(Q),

where G0
Q(Q) is the original model calculation of the quadrupole form factor and

∆Qd(Q) is an ad hoc correction that satisfies ∆Qd(0) +G0
Q(0) = Qd.

Correction I: It is suggested [98] that the short range processes missing in the

calculations that are responsible to the Qd discrepancy should be fairly constant at

low Q. Therefore a constant correction,

∆Qd = Qd −G0
Q(0), (4.40)

can be added to GQ over the entire Q range. However it appears that for most models

|∆Qd| ≈ 1, which is an extremely large correction to GQ considering that GQ(Q) itself

assumes values of only about 5 at Q ≈ 2 fm−1. This suggests that a Q dependence

in play which suppresses the correction term as Q gets larger.

Correction II: There is no conclusions on this Q behavior as the nature of the

correction itself is yet to be understood. Only ad hoc models can be suggested. For

example, the contribution of MEC involves two meson and one nucleon propagator,

two πNN and one πργ vertices. Simple power counting suggests a (Q2)−5 behavior,

∆Qd(Q) =
Qd −G0

Q(0)

(1 +Q2/M2)5
, (4.41)

where M ∼ 1 GeV/c2 is the energy scale in effective field theory.
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Correction III: Another possible Q2 dependence is

∆Qd(Q) =
(

Qd −G0
Q(0)

) GQ(Q)

Qd

, (4.42)

which simply assumes that the correction varies in the same way as GQ(Q) itself.

All three corrections were applied to a few models to quantify the effect. T20 is

calculated from Eq. 2.9,

T20(Q
2, θe) = −

1√
2S

[

8

3
ηGCG

∗
Q +

8

9
η2G∗

Q
2 +

1

3
η

[

1 + 2(1 + η) tan2
θe
2

]

GM
2

]

,

where GC and GM are the charge and magnetic form factors calculated by the models,

and G∗
Q is the quadrupole form factor from the model corrected by one of the three

∆Qd corrections.

The resulting T20 for 1.5 < Q < 2.5 fm−1 are shown in Fig. 4-17 and Tab. 4.14.

Because all models but Arenhövel under predicts Qd, the corrections increase the size

of T20 predicted by these models. It is easy to estimate that Correction I defined

by Eq. 4.40 is the largest among the three. The Qd correction given by Eq. 4.41

at 2 fm−1 is reduced by about 50%, and Eq. 4.42 is about 20% in the size of the

correction from Eq. 4.40. Judging from the bottom right of Fig. 4-17, Eq. 4.40

clearly “over corrects”. The predicted T20 lie below the range depicted by the three

green curves, which represent the parameterizations of the world data, and are more

than one standard deviation below Bate-84 data. Tab. 4.14 shows that Qmin also

is dramatically shifted to lower values that are not compatible with experimental

observations. For instance, the Qmin by the three parameterizations of world data

shown in Tab. 4.14 indicate that T20 reaches its minimum at about 3.2 fm−1, while
Correction I applied to Van Orden and Schiavilla (indicated by (+∆Q∗∗

d ) in the table)

shifted Qmin from 3.3 fm−1 down to about 2.9 fm−1.

The Qd corrections change the predicted structure function A(Q) as well. Fig. 4-18

shows the A(Q) world data below 2.5 fm−1 along with a few models. Original models

and those corrected with Eqs. 4.41 and 4.40 are shown. The discrepancy between

Mainz (blue circle) and Saclay (black diamond) data at 1.8 and 2 fm−1 is clearly
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Figure 4-17: World T20 data and theoretical calculations in the region of 1.5 < Q <
2.5 fm−1 which is around the momentum transfer region used for the normalization.
The original calculations are shown on top left. The other three figures show calcula-
tions with GQ corrected at low Q2 by Eq. 4.42 (top right), Eq. 4.41 (bottom left) and
the constant Eq. 4.40 (bottom right). Eq. 4.41 (bottom left) best reduces the dis-
crepancy between van Orden and Schiavilla however, both curves moved beyond the
range defined by the three Abbott’s parameterizations. The constant Qd correction
(bottom right) is a 20% modification of GQ at 1.96 fm−1 which moves the predictions
rather dramatically.
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theory
GC GM GQ Qmin Tmin

20 T20 T21 Pzz θS χ2 Pzz θS χ2

(Q = 0) (fm−1) (1.96fm−1, 70◦) 2004 setup 2005 setup
Abbott I 1.000 1.714 25.83 3.175 -1.240 -0.605 -0.084 0.658 31.7◦ 0.93 0.557 47.5◦ 0.57
Abbott II 1.000 1.714 25.83 3.255 -1.240 -0.565 -0.080 0.717 31.7◦ 0.81 0.589 47.6◦ 0.48
Abbott III 1.000 1.714 25.83 3.305 -1.229 -0.589 -0.083 0.683 31.7◦ 0.95 0.563 47.7◦ 0.54
Arenhövel 1.000 1.765 26.08 3.245 -1.219 -0.572 -0.082 0.709 31.7◦ 0.73 0.585 47.5◦ 0.48

(+∆Q∗
d) 3.265 -1.209 -0.560 -0.080 0.727 31.7◦ 0.64 0.602 47.4◦ 0.44

van Orden 1.000 1.753 24.05 3.325 -1.207 -0.518 -0.075 0.796 31.7◦ 0.95 0.635 47.6◦ 0.51
(+∆Qd) 3.285 -1.226 -0.555 -0.080 0.744 31.8◦ 0.79 0.602 47.5◦ 0.43
(+∆Q∗

d) 3.175 -1.267 -0.609 -0.087 0.667 31.8◦ 0.91 0.556 47.4◦ 0.59
(+∆Q∗∗

d ) 2.845 -1.337 -0.698 -0.099
Schiavilla 0.999 1.618 24.95 3.275 -1.284 -0.558 -0.059 0.698 31.5◦ 1.2 0.578 48.2◦ 0.51

(+∆Qd) 3.245 -1.290 -0.576 -0.075 0.697 31.7◦ 1.1 0.568 48.0◦ 0.49
(+∆Q∗

d) 3.195 -1.304 -0.601 -0.078 0.656 31.7◦ 1.1 0.541 48.1◦ 0.58
(+∆Q∗∗

d ) 2.985 -1.341 -0.646 -0.083
PWD 0.997 1.709 24.93 3.335 -1.261 -0.553 -0.074 0.736 31.5◦ 1.0 0.607 47.8◦ 0.52

(+∆Q∗
d) 3.245 -1.288 -0.591 -0.080 0.684 31.8◦ 1.0 0.564 47.7◦ 0.58

Krutov 0.998 1.675 24.45 3.375 -1.313 -0.535 -0.065 0.723 31.5◦ 1.7 0.597 48.4◦ 0.73
(+∆Q∗

d) 3.255 -1.334 -0.601 -0.073 0.637 31.6◦ 1.3 0.527 48.7◦ 0.53
Phillips χPT MMD 24.97 -0.554 -0.080
χPT +∆Q∗∗

d 25.83 -0.669 -0.096
χPT (Nijmegen) 25.16 -0.566 -0.082
χPT +∆Q∗∗

d 25.83 -0.638 -0.092

Table 4.14: Theoretical calculations with various Qd corrections. (+∆Qd) stands for models corrected for static Qd as
with Correction III defined in Eq. 4.41. (+∆Q∗

d) stands for the Correction II defined in Eq. 4.42. (+∆Q∗∗
d ) stands for

correction I, defined in Eq. 4.40 which is a constant amount of Qd − G0
Q(0). The three Abbott’s parameterizations and

the original models are listed for reference. The constant Qd correction changes Qmin dramatically therefore is deemed
an over correction. Arenhövel over predicts Qd while all others under predict. It is suggested that the Qd correction
should be then different for Arenhövel so only one correction to Arenhövel is listed for illustration purpose only. Only
GC/GQ is available for the χPT, the static ∆Q∗∗

d correction were provided by Phillips himself. ∆Q∗∗
d is the strongest

correction at 1.96fm−1,∆Q∗
d is suppressed by about 50% at this Q2 while ∆Qd is suppressed by 80% compared to the

constant correction.
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visible. The Qd corrections shift Schiavilla, Van Orden, and Phillips χPT upward

while moving Arenhövel slightly downward. The original Schiavilla and Phillips χPT

calculations appear to agree with Saclay data (black diamond), yet after the constant

Qd correction (bottom panel of Fig. 4-18), they seem more in favor of Mainz data.

Due to the ambiguity between the Mainz and Saclay A(Q) data, it is hard to decide

if any of the corrections can be rejected.

To summarize, though all three Qd corrections are motivated by some physics

consideration, there is no good criteria to compare the quality of each correction. It is

therefore inappropriate to rely upon any of the corrected models for the normalization

of BLAST data.
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Figure 4-18: A(Q) world data and model calculations. The relative deviations from
Abbott’s parameterization III (A − Afit)/Afit are shown, where Afit is the value
calculated from Abbott’s parameterization III. On the top, the original calculations
are shown. GQ at low Q2 is corrected by Eq. 4.41 in the middle panel. On the bottom,
GQ is corrected by Eq. 4.40 which is a constant amount.
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4.6.4 Comparison with BLAST Data

Covering a wide range in Q2, BLAST data have unique discriminating power in the Q2

evolution of the tensor analyzing powers. To take full advantage of this discriminating

power, both BLAST data sets are “renormalized” to each theory for Pzz and θS. A

grid of steps 0.1◦ in 〈θS〉, and 0.001 in Pzz was searched and the (Pzz, θS) pair that

minimized the χ2 defined by Eq. 4.30 for each theoretical model was determined. T20

and T21 at higher Q
2 were then extracted for each model using the corresponding Pzz

and θS. When T20 and T21 are compared to the models following this procedure, it

essentially compares
T2i(Q)

T2i(Q = 1.96 fm−1)
, where the effect of normalization cancels

out, as a common scaling factor to both the numerator and the denominator. The

information carried by this ratio can be interpreted as the “shape” of the T20 curve.

A χ2 is constructed for each theory,

χ2 =
1

18

9
∑

1

[

(

T20 − T 20

∆T20

)2

+

(

T21 − T 21

∆T21

)2
]

, (4.43)

with the T20 and T21 obtained by the procedure describe above using the model to

be compared to. The summation runs over the nine Q2 bins not including the ones

for normalization, T 20 and T 21 in Eq. 4.43 are the predicted values by the models,

∆T20 and ∆T21 are the quadratic sum of the statistical and systematic uncertainties

caused by tracking error, i.e., the errors that are mutually independent. The other

systematic errors are polarization related, therefore are not included. The degrees

of freedom are 18 as there are 9 data points for T20 and T21 each. The χ2 defined

by Eq. 4.43 measures the agreement in the shape of the T20 curve, not the absolute

size. The Pzz, θS and resulting χ2 are included in the rightmost columns of Tabs. 4.13

and 4.14.

The models that result in large χ2 predict poorly the shape of T20 and T21. It

can be argued that the confidence level that these theories predict the size of T2i at

low Q is also low, therefore only the models leading to reasonable χ2 in Tabs. 4.13

and 4.14 should be considered as candidates whom BLAST data shall be normalized

to. The dispersion in the resulting Pzz and θS shall be used to gauge the theoretical
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uncertainty in these quantities.

If one considers models with χ2 . 1.5 for 2004 data and χ2 . 1 for 2005 29, only

the “state of art” models by Arenhövel, Van Orden, Schiavilla and Phillips-Wallace-

Devine(PWD) fit the shape of BLAST T20 and T21 data. The three phenomenological

parameterizations fit the shape of BLAST data also. From the top-left panel of Fig. 4-

17, T20 by Van Orden lies consistently above both Bates 84 data points and is in

fairly poor agreement with the NIKHEF measurements. Therefore, this model can

also be excluded from consideration for the normalization. Arenhövel [42, 92] and

PWD [48, 93] used the old πN coupling constant. The value has since been updated

by the Particle Data Group. Hence these two models need to be considered with

caution.

4.6.5 Choice of Model for Normalization

The three parameterizations were fit to previous data, which in most cases are mea-

sured with absolute target or recoil polarimetry. The sole exceptions the VEPP-

3(1990) [33] measurements which were normalized to theoretical calculations based

on the Paris potential 30. The two data points in Ref. [33] lie beyond Q = 2.49 and

2.93 fm−1, and have 23% and 26% uncertainty respectively. Therefore these two data

points had very small impact on the predicted value at Q < 2 fm−1 by the parame-

terizations This was confirmed by refitting the parameterizations with the data from

Ref. [33] excluded, and the predicted T20 value at Q = 1.96 fm−1 changed by less than

1%. It is therefore concluded that these parameterizations are not biased toward any

of the theoretical calculations.

The elaborated comparisons with various theories and the three plausible Qd cor-

rections do not improve the uncertainty in Pzz! As can been see from Tabs. 4.13

and 4.14, the three parameterizations along with calculations by Arenhövel [42, 92]

29The χ2s for 2005 data are about 0.5 to 0.6 which is lower than the expected value 1. This
is because the experimental asymmetries for this data set are much smaller in the perpendicular
kinematics than in the parallel kinematics. As a result, most information comes from the parallel
kinematics only, effectively reduces the degree of freedom.

30The VEPP-3(2003) [39] data, normalized to calculations by D. Phillips, were not published at
the time of the original fit of the parameterizations [61].
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and Schiavilla [45, 46] give Pzz measurements spanning from 0.658 to 0.717 for the

2004 data set, and 0.557 to 0.589 for 2005 (or −4% to +5% for 2004, and −2% to

+5% for 2005, centered at Abbott’s parameterization III). Both the upper and lower

bounds are limited by Abbott’s parameterization I and II for both data sets. After

the Qd correction, Schiavilla corrected by Eq. 4.41 sets the lower bounds of Pzz, which

ranges from 0.656 to 0.717 for 2004 and 0.541 to 0.589 for 2005 (or −4% to +5% for

both data sets centered at Abbott’s parameterization III).

Because Abbott’s parameterization III seems to lie in the middle of various theo-

retical and phenomenological models. It is decided to normalize BLAST data below

2 fm−1 to this particular parameterization. The normalizations with the three pa-

rameterizations of world data differ from each other by 4-5%. It is therefore decided

that the relative uncertainty in the normalization is ∆Pzz/Pzz = ±5%.

4.6.6 The Electro-disintegration Channel

The data collected in the D(e, e′p) channel simultaneously with elastic reaction show

sizable tensor asymmetries [53]. Unfortunately, there are several difficulties in using

the electro-disintegration channel as a semi-independent tensor polarimeter.

First of all, only models by Arenhövel [99, 100] are available for this channel.

Although calculations using several N-N potential and the effects by final state inter-

actions, meson exchange currents and relativistic corrections were provided separately,

the lack of independent models makes it hard to quantify the theoretical uncertainties.

In addition, the analysis in electro-disintegration channel relies on the accurate

reconstruction of the scattering angle, as well as the momentum of both the elec-

trons and protons. As a result, it is highly susceptible to any reconstruction errors

presented. It is in fact discovered that significant corrections on kinematic variables

must be applied in order to match the missing mass and missing momentum spectra

to the Monte Carlo predictions [53]. Significant deviation from model predictions in

the tensor asymmetries are also observed at missing momentum Pm > 0.2 GeV/c over

the entire Q2 acceptance. Fig. 4-19, taken from Ref. [53] is an example. The data are

normalized by the Pzz value obtained from ed-elastic channel described in this work.
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In the right panel of the figure, the asymmetries agree with the model reasonably at

low missing momentum pM < 0.13 GeV/c. However, starting from pM ∼ 0.15 GeV/c,

the size of the asymmetry is significantly larger than the model. The measured asym-

metry becomes smaller than the model again at pM > 0.35 GeV/c. This means that

the Pzz obtained using data at pM ∼ 0.2 GeV/c will be significantly larger than the

Pzz from low pM asymmetries, while the pzz calculated using data at pM ∼ 0.2 or

0.4 GeV/c will, again, be significantly different from each other. As a result, these

deviations from the model preclude the possibility of using the entire pM range as a

tensor polarimetry.
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Figure 4-19: Tensor asymmetries AT
d in the D(e, e′p) channel in 2004 data set. Figure

taken from Ref. [53]. Calculation by Ref. [99, 100] are shown using three different
NN-potentials: BONN [101], Paris [4] and V18 [7]. Data are normalized by the Pzz
value measured in elastic channel. The agreement between data and model is good
at low missing momentum PM , while significant deviations from the theory exist at
high missing momentum. The deviations can not be explained by errors in Pzz which
only scales the data in the vertical direction in the entire PM range.

At low missing momentum, however, tensor asymmetries in electro-disintegration

channel are prohibited in the impulse approximation and acquire non-zero values only

through additional reaction mechanism. As a result, the asymmetries are small in
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Q2 Pzz
(GeV/c)2 all pmiss < 0.2 GeV/c
0.1-0.5 0.5771± 0.0086 0.600± 0.011
0.1-0.2 0.535± 0.011 0.466± 0.011
0.2-0.3 0.605± 0.017 0.534± 0.017
0.3-0.4 0.757± 0.038 0.619± 0.040
0.4-0.5 0.790± 0.074 0.683± 0.071

Table 4.15: The tensor polarization extracted by fitting tensor asymmetries in
D(e, e′p) channel to calculations by Arenhövel [99, 100]. Results for the 2005 data
set provided by Renee Fatemi [102, 53]. Fits to all data and the range with missing
momentum pmiss < 0.2 GeV/c are shown. Errors are purely statistical. The reduced
χ2 for the fits are about 3 for all the data, and about 2 for pmiss < 0.2 GeV/c.
The improved fit with limited pmiss range leads to reduced uncertainties even with
less statistics. There are significant discrepancies between Q2 bins and between pmiss
regions.

size. As a result, low missing momentum D(e, e′p) does not have advantage as a

tensor polarimetry compared to the low Q2 ed-elastic channel.

The Pzz measured by fitting D(e, e′p) data to the model in different Q2 and miss-

ing momentum ranges for the 2005 data set are tabulated in Tab. 4.15 [102, 53]. Pzz

from electro-disintegration channel differ significantly across Q2 bins, even with miss-

ing momentum limited to be below 0.2 GeV/c. This could be due to the errors in

kinematic reconstructions that were not properly corrected, or intrinsic deficiencies

in the model itself. Regardless the causes, this internal discrepancy indicates large

systematic errors in the polarization measurement.
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Chapter 5

Results and Discussions

5.1 Combination of Data Sets

The tensor analyzing powers from the two data sets can be combined by averaging,

in each bin, the T20 and T21 obtained in the two data sets. Each data set is weighted

by 1/(δT2i)
2 with i = 0 or 1. The Q2 values are slightly different in the two data

sets especially at large Q2. The Q2 are corrected to the average value, which means

shifting T20 and T21 values by the amount calculated from Abbott’s parameterization

III [61]. The shift is less than 1% except for the last bin, where the shift is about 2%,

which is still far less that the statistical uncertainty. The T20 and T21 are corrected to

θe = 70◦ to facilitate the comparison with the theories and the previous world data 1.

The combined results obtained are shown in Tab. 5.1, and Fig. 5-1 to 5-4. The T20

results by the single extraction extraction procedure described in Sec. 4.4.3 are shown

in Fig. 5-2. The T̃20R (Sec. 2.3.4) [51] are obtained from the BLAST results shown

in Fig. 5-1, and shown in Fig. 5-3. From Fig. 5-4, the few BLAST data T21 points

between 2 and 3 fm−1 are unique at this low Q.

Although it is possible that the systematic errors, ∆θe, in the reconstruction of

the electron scattering angle were in fact correlated between the two data sets, it

is difficult to determine the exact degree of the correlation. The systematic errors

1This convention was established as the very frist T20 measurement at Bates in 1984 [30] was car-
ried out at this electron scattering angle. The electron scattering angle only enters in the coefficient
in front of GM , which it a small contribution to T20.
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in reconstruction of θe are assumed to be independent between the two data sets.

The systematic errors due to the statistical error δPzz in tensor polarization are

independent between the two sets of data. The errors in spin angle θS are also

independent in the two data sets as they are dominated by the fitting errors which

are largely statistical.

Although, as discussed in Sec. 4.5.2, in both data sets the tensor polarization in

the (Pz, Pzz) = (+,+) state was higher than the (−,+) state, indicating a positive

correlation between the ∆R as defined in Eq. 4.19, there is no direct determination

of ∆R which measures the difference in polarization between tensor plus and minus

states. The effect would partially cancel when ∆R = +15% in both data sets. The

false asymmetries ∆R will be assumed to be independent. The normalization errors,

on the other hand, are of course totally correlated between the two data sets.

It is noticed in Fig. 5-4 that the T21 data lie consistently below any of the theoreti-

cal or phenomenological models at momentum transfer above 3 fm−1 2. The deviation

could largely be explained by the false asymmetry ∆R described in Sec. 4.5.2, which

is represented by the yellow area in the top systematic error band in Fig. 5-4. Shifting

all data points up by the distance corresponding to the width of the yellow area would

bring the data to agreement within 1-σ with Abbott’s parameterization III.

2The apparent agreement with Arenhövel [43] must be taken with caution as the model overpre-
dicts GM (Fig. 2-10) which leads to large value of T21, which is proportional to GMGQ.
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Q2 Q θe T20 δT20
∆T20

(GeV/c)2 fm−1 (◦) ∆θe ∆θS δPzz ∆Pzz ∆R norm
0.137 1.874 25.7 -0.542 0.017 0.017 0.016 0.004 0.027
0.164 2.050 28.3 -0.641 0.016 0.018 0.017 0.007 0.032
0.193 2.228 31.0 -0.780 0.021 0.019 0.021 0.013 0.015 0.014 0.037
0.225 2.404 33.6 -0.877 0.026 0.018 0.022 0.014 0.017 0.023 0.043
0.264 2.603 36.8 -1.016 0.031 0.034 0.022 0.016 0.019 0.034 0.049
0.311 2.827 40.4 -1.172 0.044 0.028 0.021 0.017 0.021 0.045 0.054
0.365 3.063 44.4 -1.244 0.051 0.020 0.018 0.019 0.021 0.051 0.057
0.429 3.319 48.9 -1.251 0.074 0.012 0.015 0.021 0.022 0.049 0.059
0.493 3.560 53.4 -1.15 0.10 0.005 0.011 0.019 0.021 0.040 0.058
0.569 3.823 58.6 -1.13 0.13 0.003 0.008 0.017 0.019 0.027 0.052
0.667 4.140 65.4 -0.70 0.17 0.006 0.003 0.013 0.014 0.009 0.039

Q2 Q θe T21 δT21
∆T21

(GeV/c)2 fm−1 (◦) ∆θe ∆θS δPzz ∆Pzz ∆R norm
0.137 1.874 25.7 -0.074 0.010 0.007 0.009 0.002 0.004
0.164 2.050 28.3 -0.098 0.011 0.009 0.012 0.005 0.005
0.193 2.228 31.0 -0.149 0.016 0.012 0.015 0.002 0.003 0.010 0.006
0.225 2.404 33.6 -0.148 0.023 0.013 0.018 0.003 0.003 0.018 0.008
0.264 2.603 36.8 -0.224 0.031 0.030 0.022 0.004 0.004 0.030 0.011
0.311 2.827 40.4 -0.312 0.050 0.030 0.025 0.004 0.005 0.049 0.013
0.365 3.063 44.4 -0.433 0.072 0.026 0.028 0.005 0.006 0.073 0.016
0.429 3.319 48.9 -0.64 0.12 0.019 0.029 0.007 0.007 0.088 0.020
0.493 3.560 53.4 -0.57 0.17 0.011 0.026 0.008 0.008 0.083 0.022
0.569 3.823 58.6 -0.65 0.21 0.004 0.023 0.009 0.009 0.071 0.024
0.667 4.140 65.4 -0.74 0.23 0.006 0.017 0.009 0.007 0.044 0.022

Q2 θe T s
20 δT s

20

∆T s
20

(GeV/c)2 (◦) ∆θe ∆θS δPzz ∆Pzz ∆R norm T21
0.137 25.7 -0.547 0.010 0.010 0.010 0.003 0.003 0.021
0.164 28.3 -0.643 0.009 0.011 0.013 0.003 0.005 0.025
0.193 31.0 -0.761 0.011 0.011 0.015 0.004 0.010 0.012 0.009 0.030
0.225 33.6 -0.900 0.014 0.011 0.017 0.004 0.011 0.013 0.013 0.034
0.264 36.8 -1.019 0.017 0.020 0.019 0.004 0.013 0.015 0.019 0.039
0.311 40.4 -1.163 0.026 0.017 0.021 0.004 0.014 0.017 0.027 0.044
0.365 44.4 -1.228 0.034 0.014 0.018 0.005 0.016 0.019 0.033 0.049
0.429 48.9 -1.178 0.056 0.009 0.017 0.004 0.017 0.019 0.037 0.051
0.493 53.4 -1.119 0.083 0.005 0.015 0.003 0.016 0.019 0.035 0.050
0.569 58.6 -1.01 0.11 0.003 0.010 0.001 0.014 0.017 0.028 0.045
0.667 65.4 -0.66 0.16 0.005 0.005 0.000 0.013 0.014 0.018 0.038

Table 5.1: T20 and T21 from combined data sets. T s
20 is the result from the single

extraction method. All are corrected to θe = 70◦.
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Figure 5-1: T20 from combined data sets simultaneously extracted with T21 as described in Sec. 4.4.2. Corrected to θe = 70◦ for
the comparison with theory and world data. Systematic errors are represented in the two bands. The top band represents the
systematic errors that are correlated between Q bins (the columns ∆θS, δPzz, ∆Pzz, ∆R and “norm” in Tab. 5.1), while the
bottom band is the systematic errors that are independent across Q bins (The ∆θe column in Tab. 5.1).
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Figure 5-2: T20 from combined data sets from single extraction as described in Sec. 4.4.3. Corrected to θe = 70◦ for the
comparison with theory and world data. Systematic errors are represented in the two bands (see caption of Fig. 5-1).
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Figure 5-3: T̃20R [51] (Sec. 2.3.4) from BLAST results. The systematic errors are added to statistical uncertainties in quadrature,
as with the rest of the world data.
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Figure 5-4: T21 from combined data sets simultaneously extracted with T20 as described in Sec. 4.4.2. Systematic errors
are represented in the two bands (see caption of Fig. 5-1). The T21 data lie consistently below any of the theoretical or
phenomenological models. The deviation could largely be explained by the “∆R-error” described in Sec. 4.5.2, which is
represented by the yellow area in the top systematic error band. Shifting all data points up by the distance corresponding
to the width of the yellow area brings the data to agreement within 1-σ with Abbott’s parameterization.
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5.2 Comparison with Theories

The BLAST T20 and T21 data are compared to several theoretical models. The agree-

ment with the theories is quantified with χ2s shown in Tab. 5.2. Two kinds of χ2s

are constructed for each model, denoted in Tab. 5.2 as “floating” and “fixed”, for T20

and T21 respectively.

The “fixed” χ2 is computed as,

χ220 =
1

9

9
∑

1

(

T20 − T 20

∆T20

)2

, and χ221 =
1

9

9
∑

1

(

T21 − T 21

∆T21

)2

, (5.1)

where T2i are the BLAST data as listed in Tab. 5.1, T 2i are the values calculated from

the model to be compared to, and ∆T2i are the quadratic sum of all the uncertainties,

statistical and systematic. The name “fixed” reflects the fact that the normalization

is fixed by Parameterization III.

As the “fixed” χ2 is computed with BLAST data normalized to Parameterization

III, and the parameterization does not necessarily reflect the values of the tensor ana-

lyzing powers accurately at Q . 2 fm−1. Hence it can be argued that the comparison

with theories based on this normalization might be biased.

As described in Sec. 4.6.4, the effect of the “fixed” normalization can be eliminated

by normalizing the data to the model with which they are to be compared, i.e.,

using the model concerned to refit target polarization and spin angle instead of the

parameterization III. T20 and T21 are then extracted using the refit value of Pzz and

θS. This procedure is described at the beginning of Sec. 4.6.4, Pzz and θS from each

model can be found in Tab. 4.13 and 4.14. The χ2s are then constructed as Eqs. 5.1,

but with,

∆T2i =
√

δT 2
2i +∆T 2

2i(∆θe),

where δT2i are the statistical uncertainties, and ∆T2i(∆θe) are the systematic un-

certainties due to the reconstruction error in θe. The rest of the systematic errors

are all related to the normalization, and therefore are not included when data are

normalized to each model separately. This approach effectively allows BLAST data
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to float up and down according to the theoretical calculations at low Q, hence the

name “floating”.

The “floating” χ2 tests the agreement of,
T20(Q)

∣

∣T20(Q = 1.96 fm−1)
∣

∣

, where the effect of

normalization cancels out as a common scaling factor to both the numerator and the

denominator. The information carried by this ratio can be interpreted as the “shape”

of the T20 curve. This methodology is illustrated in Fig. 5-5. The figure shows

that Arenhövel’s caculation [43] best fit the shape of BLAST data. Schiavilla [45],

Van Orden [49] and PWD [48] all seem to overpredict the size of the “dip” from

Q = 1.96 fm−1 to the minimum. The BLAST data lie systemtaically higher than

these three model predictions between Q = 3 and 3.6 fm−1. This region contributes

the most to the χ2floating in Tab. 5.2.
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Figure 5-5: Illustration of the “floating” comparison between the BLAST data and the models as well as world data.
T20(Q)/

∣

∣T III
20 (1.96 fm−1)

∣

∣ is shown for BLAST, as well as the world data, where T III
20 (Q) is the T20 predicted by the parame-

terization III. For the theoretical models, the ratio of T20 over the value predicted at Q = 1.96 fm−1, T20(Q)/
∣

∣T20(1.96 fm−1)
∣

∣

is shown. As a result, at Q = 1.96 fm−1, all theoretical curves cross the level −1. The systematic error due to tracking (the
column ∆θe in Tab. 5.1) are added to the statistical uncertainty in quadrature. This approach compares the shape of T20 as a
function of Q.
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For the χPT models, only calculations of T20 are available for comparison. In

addition χPT models are not valid for Q > 0.6 GeV/c (or 3 fm−1) since the energy

scale used was about 1 GeV. Therefore the summation only runs across the first 5

bins in Eq. 5.1, which cover the range 2.23 < Q < 3.06 fm−1. χPT calculations were

provided [98] with MMD [103] and Nijmegen [6] parameterizations of nucleon form

factors, also with corrections for static quadrupole moment [98].

The impulse approximation (IA) by Schiavilla is compared to BLAST data to

investigate the significance of MEC. The comparison is done over the entire BLAST

Q acceptance as well as for the low-Q region below Q = 3.06 fm−1.

Several observations can be made from Tab. 5.2:

• In general the floating χ2 is slightly less than the fixed. Should the BLAST

data have been normalized absolutely with independent tensor polarimetry, this

could be interpreted as an indication that the theoretical models predict the

shape of the T20, as a function of Q, better than the absolute size. However,

due to the normalization to the model, this slight increase in χ2 when data

were normalized to Parameterization III, instead of being determined by an

independent polarimeter, only reflects that the theoretical models lie slightly

further from Parameterization III than the ±5% theoretical uncertainty quoted

in Pzz.

• The Qd correction provided for the χPT theory [98] clearly needs more careful

examination. It leads to an increase in the χ2 from 0.24 to 5.4. This shows

that more investigation is still in order before the theoretical calculations could

reproduce the static quadrupole moment of the deuteron.

• In general the χ2 for T20 is less than for T21, with the exception of Van Orden’s.

As discussed in Sec. 5.1, BLAST T21 data might suffer systematic errors due

to uneven degree of tensor polarization between target spin states (Sec. 4.5.2).

Therefore, the larger χ2 for T21 could well be the result of systematic errors, in-

stead of inadequacy in the models. In fact, when all systematic errors are added

quadratically, χ2fixed for Arenhövel, Van Orden, as well as Parameterization III

are less than one.
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theory BLAST Bates VEPP2 VEPP3 NIKHEF Bates JLAB VEPP3
χ2floating χ2fixed [30] [31, 32] [33] [36] [37] [35, 104] [38] [39]
T20 T21 T20 T21 (84) (85/86) (90) (96) (99) (94) (2000) (2003)

d.o.f. 9 9 9 9 2 2 2 1 3 3 6 5 d

Abbott III [61] 0.15 0.79 0.25 0.75 0.75 0.57 0.73 0.80 0.98 1.0
Arenhövel [43] 0.21 1.0 0.27 0.61 0.12 0.75 0.60 0.86 0.97 0.94 4.2 1.1
Schiavilla (IA) [45] 1.3 3.5 2.9 3.4 0.15 0.80 0.28 3.9 3.3 3.0 47.0 2.4
Schiavilla (+MEC) [45] 0.32 3.2 0.26 2.7 0.03 0.80 0.60 1.6 1.1 2.3 1.4 0.70
Van Orden [49] 0.94 0.77 1.2 0.82 0.06 2.3 0.80 3.3 2.4 2.3 1.6
PWD [48] 0.47 1.5 0.52 1.3 0.01 1.1 0.80 1.8 1.6 0.42 1.1 0.42

Schiavilla (IA) a 0.87 4.2 3.5 3.8
Schiavilla (+MEC) a 0.31 3.8 0.21 2.4
Phillips χPT [50, 98] a,b 0.24
Phillips χPT a,c 0.23
χPT +∆Qd

a,b 5.4
a Compared to the first 5 out of the 9 bins: 2.23 < Q < 3.06 fm−1.
b With MMD nucleon form factor.
c With Nijmegen nucleon form factor.
d The data point at 4.6 fm−1 is excluded. It deviates from all theoretical curves significantly and dominates the χ2 when included.

Table 5.2: Reduced χ2s for comparison between BLAST data and theoretical models. The χ2s compared to Parameter-

ization III, and for previous world data are show for reference. χPT models are only compared to data up to 3 fm−1.
The lower part of the table shows comparisons between BLAST data and theories for the first five bins, which cover
2.23 < Q < 3.06 fm−1. The Bates-84 data agree very well with the relativistic models (Van Orden and PWD). On the
other hand, the NIKHEF(96,99) data agree better with nonrelativistic models with MEC (Arenhövel and Schiavilla MEC).
BLAST data seem to agree better with nonrelativistic models with MEC corrections.

18
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• In general, the nonrelativistic approach with MEC corrections (Arenhövel [43]

and Schiavilla [45, 46]) fits better to BLAST data, in both the shape (χ2float)

and the size (χ2fixed), compared to the relativistic models [49, 48]. Compared

with previous world data, Bates-84 data agree better with relativistic models,

while all NIKHEF data agree better with nonrelativistic models with MEC.

• Van Orden fits T20 the worst among the models listed except for the χPT+∆Qd.

Further examine showed that the floating χ2 is dominated by the difference

between Van Orden and data at Q = 3.06, 3.32 and 3.56 fm−1. As can be seen

from the lower panel of Fig. 5-5, there is significant deviation in the shape of

T20 between this model and BLAST T20 data in this Q range, which happens

to be around the minimum.

• The fixed χ2 for the IA is much larger than the corresponding model with MEC

included. This reflects the fact that the T20 derived from the IA is much smaller

than the full MEC model for Q < 2 fm−1 where the normalization takes place.

The agreement between T20 and the IA model at low Q is much better than

for the entire Q range. This is also obvious from Fig. 5-1 which shows that the

IA model (purple dotted curve) deviates from all the data beyond 3.5 fm−1.

Limited to the low Q region, the χ2 for the full model is much smaller than the

IA. This is true even for the floating χ2 where data are normalized to MEC and

IA respectively for comparison to the two models. This is evidence that MEC

plays an important role in T20 even at low momentum transfer.

A third approach to compare BLAST data with theoretical calculations is to

compare with the ratio
T21
T20

. As can be obviously seen from Eqs. 4.14, a common

scaling in A∗
‖ and A∗

⊥ would not affect the T21 to T20 ratio. As a result, this ratio is

insensitive to any uncertainty in Pzz. The result is shown in Fig. 5-6. The T21/T20

ratio displays a systematic deviation from all of the models and previous world data

as well. This deviation is largely driven by the systematic deviation in T21 from the

models as can be seen in Fig. 5-4. The magnitude of the deviation is similar to the

size of systematic uncertainty due to the uneven degree of tensor polarization between

target spin states (Sec. 4.5.2), which is the dominating systematic error in T21.
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Figure 5-6: The T21/T20 ratio compared to models and previous world data. A clear systematic deviation is obvious that
the BLAST data lie consistently above all the models and previous data. This deviation is largely driven by the systematic
deviation in T21 from the models as can be seen in Fig. 5-4. The magnitude of the deviation is similar to the size of the
systematic uncertainty due to the “false asymmetry” discussed in Sec. 4.5.2, which is the dominating systematic error in T21.
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The significant difference among the theoretical models, for example between

Arenhövel and Schiavilla, is again largely driven by the difference in T21 predicted

by the models (Fig. 5-4). Because T21 is proportional to the product of GM and GQ,

the difference between T21 is largely a result of the different GM calculations by the

models, again for example, Arenhövel’s prediction of GM is consistently higher than

world data, while Schiavilla is consistently below world data. This is demonstrated

in Fig. 2-10.

5.3 Refit of Parameterization I

Parameterization I [61] is refit with VEPP-3(2003) and BLAST data included 3. This

parameterization is chosen as it fits the first nodes of the form factors explicitly. The

previous world data used are summarized in Tab. A.1 and A.2.

The fit minimizes χ2 =
∑

I

dyTI C
−1
I dyI , where dyI is the vector of difference be-

tween the measured value and the model prediction for each experiment. C is the

variance-covariance matrix [88]. The uncertainties in the cross section measurements

are all considered independent therefore C is diagonal. The same is assumed for the

recoil polarimeter experiments 4.

For experiments with polarized target, the uncertainties in Pzz dominate the sys-

tematic errors without exception, therefore the covariance matrices have non-zero

3Some of the systematic errors in the world data were not incorporated in the original fit in a
consistent fashion. Due to the inadequate descriptions in some of the publications, it is probably not
possible to include all the systematic errors correctly. For consistency, all the literature for data used
in the fit were re-examined and systematic errors are included whenever possible. The fit results on
the other hand were not affected significantly.

4For example, for Ref. [12], which is a cross section experiment with six data points,

dy =

















σ1 − σ1(a)
σ2 − σ2(a)
σ3 − σ3(a)
σ4 − σ4(a)
σ5 − σ5(a)
σ6 − σ6(a)

















, and C =

















dσ2
1 0 0 0 0 0

0 dσ2
2 0 0 0 0

0 0 dσ2
3 0 0 0

0 0 0 dσ2
4 0 0

0 0 0 0 dσ2
5 0

0 0 0 0 0 dσ2
6

















,

where σi is the measured cross section, σi(a) is the calculated cross section value from the parame-
terization with parameters a. Parameterization I has 18 parameters, therefore a = (a1, a2, ..., a18).
dσi is the standard deviation of the measurement.
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off-diagonal elements. For example, two BLAST data sets for T20 and T21 are used,

leading to a 36 × 36 covariance matrix. As discussed in Sec. 5.1 the statistical and

tracking errors are independent between Q2 bins within each data set. The errors

from Pzz and θS and false asymmetries are correlated within data sets but indepen-

dent between the 2004 and 2005 data sets. The normalization errors are correlated

across all the 36 BLAST data points.

The fit converges to χ2 of 1.19 and gives the first nodes of the form factors,

Q0
C = 4.19± 0.05 fm−1, Q0

M = 7.30± 0.15 fm−1, Q0
Q = 10.5± 7.7 fm−1.

The original fit gives Q0
C = 4.21±0.08 fm−1 [61] with world data up to 2001. Ref. [39]

obtained Q0
C = 4.17 ± 0.04 fm−1 with the 2003 VEPP-3 data included. It must be

noted that the ±0.08 fm−1 uncertainty in Ref. [61] includes the dispersion among the

three parameterizations. On the other hand, the ±0.04 fm−1 uncertainty in Ref. [39] is

obtained by refitting parameterization I varying only Q0
C , while keeping the remaining

17 parameters fixed at the original values found in Ref. [61]. These differences make

direct comparisons between the Q0
C values difficult. G0

Q lies beyond 7 fm−1 where no

polarized measurements exist; hence the uncertainty is large.

5.4 Separation of Form Factors

The T20 and T21 data are used in combination with world A(Q) data to separate the

form factor GC and GQ. Define for each Q point,

dA = G2
C +

8

9
η2G2

Q +
2

3
ηG2

M − A(Q),

dT20 = − 1√
2S

[

8

3
ηGCGQ +

8

9
η2G2

Q +
1

3
η

[

1 + 2(1 + η) tan2
θe
2

]

G2
M

]

− T20,

dT21 = − 2√
3S

η

[

η + η2 sin2
θe
2

]1/2

GMGQ sec
θe
2
− T21,
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Q GC δGstat
C δGtotal

C GQ δGstat
Q ∆Gtotal

Q

2.228 0.1223 0.0009 0.0014 3.87 0.11 0.26
2.404 0.0953 0.0009 0.0014 2.985 0.095 0.20
2.603 0.0701 0.0010 0.0017 2.358 0.083 0.18
2.827 0.0479 0.0017 0.0021 1.839 0.096 0.15
3.063 0.0314 0.0033 0.0033 1.37 0.12 0.12
3.319 0.0139 0.0033 0.0033 1.091 0.055 0.055
3.560 0.0087 0.0026 0.0026 0.763 0.031 0.031
3.823 0.0065 0.0025 0.0015 0.522 0.024 0.024
4.140 0.0003 0.0016 0.0017 0.3637 0.0048 0.0048

Table 5.3: Separated deuteron form factors GC and GQ. The uncertainties are esti-
mated with the fit, which produces the covariance matrix of the 18 parameters [88].

where A(Q), S and GM are fixed with Parameterization I obtained in Sec. 5.3. T20

and T21 are the measured values from BLAST. The residual vector is defined as,

dy = [dA(Q1), ..., dA(Q9), dT20(Q1), ..., dT20(Q9), dT21(Q1), ..., dT21(Q9)]
T ,

and GC and GQ are determined by minimizing the χ2 = dyTC−1dy, with C the co-

variance matrix. The uncertainties in A(Q) are calculated from the covariance matrix

of the parameterization and are taken to be independent between Q values; therefore

the upper-left 9 block of C is diagonal. The lower-right 18×18 block of C on the other

hand has non-zero off-diagonal elements. The statistical uncertainties in GC and GQ

are estimated by fitting with only a diagonal covariance matrix whose elements are

the statistical variances of A(Q), T20 and T21. The results are tabulated in Tab. 5.3

and shown in Fig. 5-7, 5-8 and 5-9.
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Figure 5-7: GC separated with BLAST and world A(Q) data. The error bars are
quadratic sum of statistical uncertainties and all systematic errors.
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Figure 5-8: GQ separated with BLAST and world A(Q) data. The error bars are
quadratic sum of statistical uncertainties and all systematic errors.
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Figure 5-9: Linear scale plot of GC is shown in the vicinity of its first node.

196



5.5 Outlook

This work substantially increased the statistical precision of deuteron tensor analyzing

power data in a broad Q2 range that covers the minimum of T20, as well as the first

node of GC . Nine Q2 bins were obtained compared with only a total of 26 data

points measured from 1984 to 2003. T20 and T21 were measured simultaneously,

which provides additional control on systematic errors.

Unfortunately, an independent tensor polarimeter was not implemented. One had

to resort to the normalization at low Q2 to theoretical calculations and previous world

data. The direct effect is a dominating systematic error from the tensor polarization

Pzz. The Pzz related uncertainties in T20 include statistical, tracking, false asymmetry

and normalization errors (columns δPzz, ∆Pzz, ∆R and “norm” in Tab. 5.1). At

Q2 = 0.365 (GeV/c)2, when these uncertainties are added in quadrature, the total

error is ±0.082 or 6.6% for T20 due to uncertainties in Pzz. NIKHEF achieved 5%

relative uncertainty in tensor polarization in 1999 with a dedicated ion-extraction

tensor polarimeter [71, 80]. It was proposed to install the same apparatus for BLAST

and obtain a better than 5% measurement on Pzz [62]. However, the effort was not

successful due to constraints in resources.

The ion-extraction polarimeter measures the tensor polarization on each target

state individually [71, 80] as opposed to relying on the assumption that all states are

equally polarized, as was done in this work (Sec. 4.3.3). This provides additional diag-

nostics on the target performance. More importantly, the ion-extraction polarimeter

could completely eliminate the systematic error due to the false asymmetry discussed

in Sec. 4.5.2. This error in listed in the ∆R columns in Tab. 5.1, and it can be seen

that the effect of this error is almost as big as the normalization uncertainty, and is the

dominating error in T21. Even if the independent polarimeter could not achieve better

precision on the absolute value of Pzz itself, being able to reduce the ∆R error could

lead to significant improvement in the results. The ion-extraction polarimeter also

measures the molecular fraction in the target gas stored in the target cell [71, 72, 80],

providing valuable knowledge on the recombining process inside the cell (Sec. 3.2.2).

197



The Q2 acceptance was reduced as the data below 2 fm−1 were used for tensor

polarimetry. This means that BLAST T20 data cannot provide any information to

better resolve the difference between Bates-84 and NIKHEF-96/99 measurements in

this region of momentum transfer, where NIKHEF measurements are consistently

lower (more negative) than the Bates-1984 data (Sec. 2.3.2).

The tensor ed-elastic asymmetries appeared to provide an very good measure-

ment on the target spin angle θS (Sec. 4.3.3). However, without a dedicated tensor

polarimetry, the target spin angle must be measured simultaneously with the ten-

sor polarization Pzz by ed-elastic data also. With the help of an independent tensor

polarimeter to constrain Pzz, the ed-elastic data could be used to obtain smaller

statistical uncertainty and better understand the systematic errors in θS.

It must be noted that BLAST and the Novosibirsk 2003 data both are normalized

to measurements at Q = 1.96 fm−1. Therefore one future precise measurement of T20

at this momentum transfer with absolute tensor polarimetry could potentially improve

the systematic errors in both sets of data. BLAST achieved 2% statistical uncertainty

on T20 below 2 fm−1, and the systematic uncertainty due to reconstruction error is

also about 2%. With a lower beam energy, the event rate at this low Q will be much

higher, therefore comparable or even higher statistical precision could be expected,

while the challenge will be the control of systematic errors. It will be interesting to

extend the Q coverage down to about 1.5 fm−1 as well. This will connect with the

NIKHEF (96) measurement at 1.58 fm−1.

The particle tracking with the BLAST drift chamber has room to improve. The

design of the chambers left little of the redundancy which is desirable for precise

calibration and diagnoses of systematic errors. Though not a major contributor of

systematic errors, poor tracking resolution and accuracy caused confusion in the si-

multaneously measured electro-disintegration data which could have served as a good

cross-check for this work. For example, the electro-disintegration channel could have

been used to verify the Pzz extracted from elastic reaction. However, the large incon-

sistency within D(e, e′p) data prevented an accurate comparison [53].

It is proposed to continue the BLAST physics program at other facilities [105],
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with a higher beam energy of about 1.5 GeV. Fig. 5-10 shows the Monte Carlo

projected results for 1000 beam hours, under a luminosity of ∼ 5 × 1031 /cm2/sec

and 60% target polarization. The measurement would provide even better statistical

precision around the minimum of T20
5.
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Figure 5-10: Projected statistical precision of T20 with 1.5 GeV beam. The projection
is for 1000 beam hours with similar luminosity and target polarization as described
in this work.

A few challenges must be answered under high beam energy. First, the mea-

surement of target polarization must be addressed. With higher beam energy, the

acceptance of the current BLAST detector package starts at almost 3 fm−1. The

absolute precision of data and models means that the precision in target polarization

would be low if the data were to be normalized at this momentum transfer. Either

an independent tensor polarimeter or a forward-angle detector for low Q2 data must

5The detection efficiency is not taken into account in this projection. If the detection efficiency
was not improved from the level of 50-60% described in Sec. 4.2.3, the statistical uncertainty will
increase by about 40%.
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be implemented. An independent polarimeter that can separately measure the polar-

ization in each individual target state would be highly desirable. It would eliminate

the systematic error due to the false asymmetry described in Sec. 4.5.2, which is the

dominant error in T21 and the T21/T20 ratio. In addition, at high Q2 the deuteron

identification must be treated with greater care. With the higher momentum of the

recoil deuterons and knocked-out protons, their respective velocities become much

closer to each other, leading to less separated time of flight peaks in Fig 4-2 and less

separated distribution in Fig 3-22.

The discrepancy in world A(Q) data at 2 fm−1, described in Secs. 2.3.1 and 4.6.1,

should be resolved in the near future as well [60]. It could potentially affect the

normalization of BLAST data through the parameterizations.

A much better understanding of deuteron structure can be hoped for when the

discrepancy in world A(Q) data is resolved [60] and the absolute normalization in

VEPP-3 and BLAST data are established.
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Appendix A

Elastic Electron-Deuteron

Scattering World Data

A.1 Cross Sections

Table A.1: World Cross Section Data. (Data below Q =

10 fm−1 are included. Data with (*) marked in front of

the Q value are rejected from the fit due to inconsistency

with the rest of the data.)

Q(fm−1) θe(
◦) E0(GeV) dσ/dΩ(cm2/sr) error Ref.

1.79 43.0 0.500 4.60×10−32 0.45×10−32 [11]

2.00 48.5 0.500 1.61×10−32 0.15×10−32

2.22 55.0 0.500 0.726×10−32 0.070×10−32

2.42 61.0 0.500 0.217×10−32 0.020×10−32

2.62 67.5 0.500 0.0947×10−32 0.010×10−32

2.82 75.0 0.500 0.0335×10−32 0.0337×10−32

0.98 60.0 0.200 39.2×10−32 3.7×10−32

1.07 70.0 0.190 20.1×10−32 1.9×10−32

1.37 90.0 0.200 3.53×10−32 0.34×10−32

Continued on next page
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Table A.1 –continued from previous page

Q(fm−1) θe(
◦) E0(GeV) dσ/dΩ(cm2/sr) error Ref.

1.51 105.0 0.200 1.08×10−32 0.10×10−32

1.60 145.0 0.179 0.185×10−32 0.018×10−32

1.80 145.0 0.204 0.0825×10−32 0.009×10−32

2.00 145.0 0.228 0.0579×10−32 0.006×10−32

2.25 145.0 0.260 0.0192×10−32 0.0023×10−32

0.548 45 674×10−32 8.8×10−32 [12]

0.775 45 225.4×10−32 2.5×10−32

1.001 45 86.8×10−32 0.955×10−32

1.268 60 15.95×10−32 0.271×10−32

1.261 120 1.71×10−32 0.0684×10−32

1.483 60 6.74×10−32 0.148×10−32

Continued on next page
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Table A.1 –continued from previous page

Q(fm−1) θe(
◦) E0(GeV) dσ/dΩ(cm2/sr) error Ref.

*2.450 90 617.00×10−36 13.3×10−36 [13] 1

*2.450 120 221.00×10−36 7.9×10−36

2.450 145 97.30×10−36 5.8×10−36

*2.646 90 331.00×10−36 8.2×10−36

2.646 120 119.00×10−36 6.7×10−36

2.647 145 58.70×10−36 6.0×10−36

*2.828 90 180.00×10−36 5.2×10−36

2.828 120 68.70×10−36 7.2×10−36

2.828 145 33.00×10−36 6.1×10−36

3.464 90 29.00×10−36 8.5×10−36

3.464 120 9.28×10−36 14.9×10−36

3.464 145 5.81×10−36 10.5×10−36

4.472 90 2.93×10−36 19.0×10−36

0.939 60 59.400×10−32 1.800×10−32 [14]

0.999 60 44.700×10−32 1.600×10−32

1.000 90 14.630×10−32 0.280×10−32

1.005 130 3.241×10−32 0.095×10−32

1.163 60 22.910×10−32 0.760×10−32

1.162 60 23.890×10−32 0.760×10−32

1.155 110 3.780×10−32 0.110×10−32

Continued on next page

1Several of the data points are fit with large residuals, defined as the difference between the
measured value σ and the value caluclated from the parameterization σmodel, divided by the uncer-

tainty in the data δσ:
σ − σmodel

δσ
. The author estimated that the final results could differ from the

published figures by up to 2%. An 2% error is added to the published uncertainties.
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Table A.1 –continued from previous page

Q(fm−1) θe(
◦) E0(GeV) dσ/dΩ(cm2/sr) error Ref.

1.732 82.16 1.301×10−32 0.070×10−32 [15] 2

2.005 80.84 4.61×10−33 0.29×10−33

2.241 79.69 2.09×10−33 0.12×10−33

1.723 180.00 2.855×10−34 0.37×10−34

1.990 180.00 1.806×10−34 0.18×10−34

2.220 180.00 7.81×10−35 0.98×10−35

2.252 180.0 83.0×10−36 9.0×10−36 [16]

2.452 180.0 56.0×10−36 7.0×10−36

2.839 180.0 24.5×10−36 2.6×10−36

3.028 180.0 13.9×10−36 2.4×10−36

3.177 180.0 6.9×10−36 1.4×10−36

Continued on next page

2The authors used recoil angles.
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Table A.1 –continued from previous page

Q(fm−1) θe(
◦) E0(GeV) dσ/dΩ(cm2/sr) error Ref.

3.795 9.845 4.419 2.84919×10−33 3.23374×10−34 [17] 3

3.847 10.028 4.419 1.69692×10−33 1.45695×10−34

3.924 10.269 4.419 1.81863×10−33 1.58504×10−34

4.000 10.496 4.419 1.37407×10−33 1.30090×10−34

4.087 10.640 4.419 1.08135×10−33 9.54129×10−35

4.159 10.851 4.419 8.93057×10−34 9.31886×10−35

4.219 11.093 4.419 7.13201×10−34 1.21396×10−34

4.025 10.493 4.419 1.10961×10−33 2.18681×10−34

4.087 10.640 4.419 6.99695×10−34 1.27217×10−34

4.159 10.933 4.419 8.11565×10−34 1.15938×10−34

4.243 11.137 4.419 5.65526×10−34 8.29438×10−35

4.324 11.339 4.419 5.15366×10−34 1.10436×10−34

4.405 11.522 4.419 5.18295×10−34 1.00780×10−34

4.472 11.746 4.419 5.55959×10−34 9.14869×10−35

4.266 10.084 4.910 7.77695×10−34 1.06583×10−34

*4.336 10.186 4.910 4.86592×10−34 5.94921×10−35

4.427 10.391 4.910 5.63902×10−34 6.48660×10−35

4.506 10.627 4.910 4.19633×10−34 5.30861×10−35

4.594 10.812 4.910 3.29051×10−34 4.11314×10−35

4.669 11.053 4.910 2.37409×10−34 3.84987×10−35

4.743 11.219 4.910 1.94101×10−34 4.40067×10−35

4.517 10.645 4.910 5.46233×10−34 1.24373×10−34

4.583 10.815 4.910 3.58358×10−34 7.24955×10−35

4.669 11.053 4.910 3.46489×10−34 6.33625×10−35

4.754 11.278 4.910 2.23597×10−34 5.31630×10−35

4.848 11.453 4.910 2.64995×10−34 5.42209×10−35

Continued on next page

3The authors used recoil angles.
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Table A.1 –continued from previous page

Q(fm−1) θe(
◦) E0(GeV) dσ/dΩ(cm2/sr) error Ref.

4.930 11.677 4.910 8.94092×10−35 4.24694×10−35

5.010 11.833 4.910 1.13204×10−34 5.47761×10−35

4.764 11.220 4.910 2.03705×10−34 9.01002×10−35

4.827 11.410 4.910 1.81213×10−34 5.22140×10−35

4.919 11.638 4.910 1.99703×10−34 5.31046×10−35

5.010 11.853 4.910 1.35675×10−34 4.59544×10−35

5.099 12.081 4.910 9.81396×10−35 4.40917×10−35

5.187 12.276 4.910 1.11203×10−34 4.72612×10−35

5.263 12.478 4.910 4.55621×10−35 2.78813×10−35

5.560 13.321 4.910 6.07195×10−35 1.67072×10−35

5.840 14.320 4.910 2.24917×10−35 1.17002×10−35

Continued on next page
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Table A.1 –continued from previous page

Q(fm−1) θe(
◦) E0(GeV) dσ/dΩ(cm2/sr) error Ref.

2.482 11.40 8.11×10−32 0.41×10−32 [18]

2.569 11.80 5.45×10−32 0.32×10−32

2.653 12.20 4.00×10−32 0.26×10−32

2.739 12.60 2.95×10−32 0.21×10−32

3.123 13.35 7.54×10−33 0.54×10−33

3.302 14.15 4.35×10−33 0.36×10−33

3.321 14.25 3.63×10−33 0.22×10−33

3.421 14.70 2.68×10−33 0.16×10−33

3.524 15.15 2.05×10−33 0.15×10−33

3.606 15.55 1.56×10−33 0.13×10−33

0.686 180. 0.0701 279.0×10−35 17.00×10−35 [19]

1.288 180. 0.1353 85.7×10−35 3.80×10−35

1.921 180. 0.2081 16.0×10−35 2.30×10−35

2.431 180. 0.2763 6.35×10−35 0.63×10−35

4.533 8. 0.114×10−32 0.011×10−32 [20]

5.068 8. 0.352×10−33 0.030×10−33

6.207 8. 0.526×10−34 0.042×10−34

6.704 8. 0.199×10−34 0.017×10−34

7.167 8. 0.904×10−35 0.071×10−35

8.013 8. 0.215×10−35 0.020×10−35

8.778 8. 0.624×10−36 0.068×10−36

0.136 8. 0.468×10−37 0.106×10−37

Continued on next page
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Table A.1 –continued from previous page

Q(fm−1) θe(
◦) E0(GeV) dσ/dΩ(cm2/sr) error Ref.

0.60000 1.50814 5.25791×10−27 3.08785×10−29 [21]

0.61563 1.54746 4.62621×10−27 2.22991×10−29

0.62209 1.56372 4.46479×10−27 2.22982×10−29

0.64109 1.61153 3.77998×10−27 2.40107×10−29

0.65038 1.63491 3.49515×10−27 2.22949×10−29

0.67823 1.70499 2.84120×10−27 2.57199×10−29

0.69714 1.75257 2.44308×10−27 2.05733×10−29

0.70143 1.76337 2.42073×10−27 1.71440×10−29

0.71134 1.78831 2.24236×10−27 1.54291×10−29

0.74699 1.87808 1.73618×10−27 1.37112×10−29

0.75299 1.89318 1.66635×10−27 1.88521×10−29

0.75498 1.89819 1.64272×10−27 1.37108×10−29

0.78867 1.98301 1.29533×10−27 1.71340×10−29

0.78930 1.98461 1.26890×10−27 2.05601×10−29

0.79750 2.00524 1.20820×10−27 1.71327×10−29

0.82523 2.07508 9.94518×10−28 1.71292×10−29

0.82704 2.07966 1.00428×10−27 1.37033×10−29

0.83606 2.10238 9.41147×10−28 1.19891×10−29

0.85615 2.15299 8.13941×10−28 1.19873×10−29

0.88431 2.22392 6.72183×10−28 1.02728×10−29

0.88882 2.23529 6.62919×10−28 1.02725×10−29

0.90499 2.27603 5.94519×10−28 1.19829×10−29

0.92087 2.31606 5.17754×10−28 1.36927×10−29

0.93328 2.34733 5.09146×10−28 8.55705×10−30

0.94393 2.37418 4.65124×10−28 1.19788×10−29

Continued on next page
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Table A.1 –continued from previous page

Q(fm−1) θe(
◦) E0(GeV) dσ/dΩ(cm2/sr) error Ref.

0.210 30.0 0.0801 156.380×10−30 0.761×10−30 [22] 4

0.459 70.0 0.0801 3.635×10−30 0.020×10−30

0.487 75.0 0.0801 2.583×10−30 0.014×10−30

0.513 80.0 0.0801 1.876×10−30 0.010×10−30

0.539 85.0 0.0801 1.376×10−30 0.008×10−30

0.562 90.0 0.0801 1.014×10−30 0.006×10−30

0.607 100.0 0.0801 0.565×10−30 0.006×10−30

0.647 110.0 0.0801 0.326×10−30 0.002×10−30

0.682 120.0 0.0801 0.187×10−30 0.001×10−30

0.711 130.0 0.0801 0.1072×10−30 0.0005×10−30

0.724 135.0 0.0801 0.0802×10−30 0.0004×10−30

0.513 40.0 0.1494 10.330×10−30 0.064×10−30

0.573 45.0 0.1494 5.796×10−30 0.040×10−30

0.631 50.0 0.1494 3.447×10−30 0.023×10−30

0.688 55.0 0.1494 2.110×10−30 0.015×10−30

0.743 60.0 0.1494 1.331×10−30 0.011×10−30

0.796 65.0 0.1494 0.8609×10−30 0.0057×10−30

0.847 70.0 0.1494 0.5675×10−30 0.0044×10−30

0.515 40.0 0.1498 10.220×10−30 0.186×10−30

0.575 45.0 0.1498 5.760×10−30 0.045×10−30

0.633 50.0 0.1498 3.458×10−30 0.027×10−30

0.690 55.0 0.1498 2.0770×10−30 0.020×10−30

0.745 60.0 0.1498 1.345×10−30 0.023×10−30

Continued on next page
4The authors did not clearly list all the systematic errors and how the total systematic errors

should be determined. They stated that “The over-all normalization error, linearly added, was 0.48%
and the maximum of the systematic errors 0.46%.” They also stated that “The error in the ratio
determination is less 0.07%” for gas target and “of the order of 1%” with the liquid target system.
An over-all 0.46% systematic error is added to the statistical uncertainties listed in the publication.
For the data points that are not consistent with the rest of the world data, a 1% systematic error is
added.
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Table A.1 –continued from previous page

Q(fm−1) θe(
◦) E0(GeV) dσ/dΩ(cm2/sr) error Ref.

1.033 90.0 0.1498 0.1235×10−30 0.0012×10−30

*1.245 120.0 0.1498 0.0191×10−30 0.0003×10−30

0.712 53.0 0.1602 2.064×10−30 0.018×10−30

1.476 157.0 0.1602 0.00142×10−30 0.00002×10−30

0.486 28.0 0.1995 25.360×10−30 0.142×10−30

0.520 30.0 0.1995 18.450×10−30 0.117×10−30

0.603 35.0 0.1995 8.890×10−30 0.073×10−30

0.683 40.0 0.1995 4.484×10−30 0.037×10−30

0.762 45.0 0.1995 2.388×10−30 0.020×10−30

0.839 50.0 0.1995 1.362×10−30 0.007×10−30

0.985 60.0 0.1995 0.4780×10−30 0.0028×10−30

1.245 70.0 0.2225 0.1157×10−30 0.0015×10−30

1.446 85.0 0.2225 0.0311×10−30 0.0005×10−30

*1.836 125.0 0.2225 0.0180×10−30 0.0003×10−30

*1.995 157.0 0.2225 0.00296×10−30 0.00006×10−30

1.225 53.0 0.2784 0.257×10−30 0.0032×10−30

1.456 65.0 0.2784 0.0646×10−30 0.0011×10−30

*1.863 90.0 0.2784 0.0485×10−30 0.0010×10−30

*1.995 100.0 0.2784 0.0251×10−30 0.0006×10−30

0.776 30.0 0.2989 5.570×10−30 0.084×10−30

1.017 40.0 0.2989 1.057×10−30 0.015×10−30

1.245 50.0 0.2989 0.270×10−30 0.008×10−30

1.353 55.0 0.2989 0.1363×10−30 0.015×10−30

*1.456 60.0 0.2989 0.0803×10−30 0.001×10−30

*1.833 80.0 0.2989 0.00940×10−30 0.00019×10−30

*1.990 90.0 0.2989 0.00384×10−30 0.00006×10−30

Continued on next page
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Table A.1 –continued from previous page

Q(fm−1) θe(
◦) E0(GeV) dσ/dΩ(cm2/sr) error Ref.

2.592 155.0 0.300 5.610×10−35 0.522×10−35 [23]

2.818 155.0 0.330 2.880×10−35 0.245×10−35

3.041 155.0 0.360 1.650×10−35 0.134×10−35

3.296 155.0 0.395 8.020×10−36 0.722×10−36

3.543 155.0 0.430 4.380×10−36 0.416×10−36

3.820 155.0 0.470 1.980×10−36 0.192×10−36

4.022 155.0 0.500 1.180×10−36 0.106×10−36

4.254 155.0 0.535 5.490×10−37 0.598×10−37

4.482 155.0 0.570 3.290×10−37 0.349×10−37

4.673 155.0 0.600 1.940×10−37 0.254×10−37

4.893 155.0 0.635 9.810×10−38 1.589×10−38

5.108 155.0 0.670 6.760×10−38 1.528×10−38

5.289 155.0 0.700 3.770×10−38 0.916×10−38

3.583 90.0 0.571 2.200×10−35 0.12×10−35 [24]

3.583 99.0 0.534 1.670×10−35 0.11×10−35

3.925 139.0 0.501 2.320×10−36 0.25×10−36

4.476 115.0 0.639 1.030×10−36 0.15×10−36

5.068 116.0 0.738 3.100×10−37 0.12×10−37

*5.778 139.0 0.806 2.080×10−37 0.26×10−37

*5.778 77.5 1.100 2.180×10−38 0.43×10−38

Continued on next page
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Table A.1 –continued from previous page

Q(fm−1) θe(
◦) E0(GeV) dσ/dΩ(cm2/sr) error Ref.

5.551 180. 60.40×10−40 11.90×10−40 [25]

6.186 180. 13.40×10−40 2.70×10−40

6.430 180. 4.74×10−40 1.29×10−40

6.685 180. 0.62×10−40 0.34×10−40

7.131 180. 0.18×10−40 0.17×10−40

7.568 180. 0.24×10−40 0.12×10−40

7.981 180. 0.28×10−40 0.11×10−40

8.061 180. 0.314×10−40 0.170×10−40

8.434 180. 0.050×10−40 0.075×10−40

Continued on next page
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Table A.1 –continued from previous page

Q(fm−1) θe(
◦) E0(GeV) dσ/dΩ(cm2/sr) error Ref.

0.678 40.0 0.200 4.497×10−30 0.076×10−30 [26]

0.837 50.0 0.200 1.349×10−30 0.024×10−30

0.985 60.0 0.200 4.649×10−31 0.084×10−31

1.118 70.0 0.200 1.822×10−31 0.035×10−31

1.245 80.0 0.200 7.450×10−32 0.134×10−32

1.357 90.0 0.200 3.387×10−32 0.058×10−32

1.459 100.0 0.200 1.633×10−32 0.031×10−32

1.546 110.0 0.200 8.141×10−33 0.163×10−33

1.622 120.0 0.200 4.344×10−33 0.096×10−33

1.688 130.0 0.200 2.303×10−33 0.046×10−33

0.775 30.0 0.300 5.546×10−30 0.083×10−30

0.900 35.0 0.300 2.348×10−30 0.040×10−30

1.020 40.0 0.300 1.067×10−30 0.016×10−30

1.245 50.0 0.300 2.634×10−31 0.040×10−31

1.460 60.0 0.300 7.408×10−32 0.111×10−32

1.655 70.0 0.300 2.400×10−32 0.041×10−32

1.833 80.0 0.300 8.802×10−33 0.150×10−33

1.990 90.0 0.300 3.417×10−33 0.058×10−33

2.131 100.0 0.300 1.466×10−33 0.264×10−33

1.487 35.0 0.500 2.457×10−31 0.037×10−31

1.679 40.0 0.500 8.914×10−32 0.134×10−32

1.866 45.0 0.500 3.470×10−32 0.063×10−32

2.042 50.0 0.500 1.425×10−32 0.021×10−32

2.214 55.0 0.500 6.129×10−33 0.092×10−33

2.377 60.0 0.500 2.830×10−33 0.043×10−33

2.530 65.0 0.500 1.353×10−33 0.024×10−33

2.676 70.0 0.500 6.695×10−34 0.100×10−34

Continued on next page
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Table A.1 –continued from previous page

Q(fm−1) θe(
◦) E0(GeV) dσ/dΩ(cm2/sr) error Ref.

2.814 75.0 0.500 3.594×10−34 0.054×10−34

2.945 80.0 0.500 2.041×10−34 0.043×10−34

3.066 85.0 0.500 1.164×10−34 0.027×10−34

1.918 35.0 0.650 5.088×10−32 0.087×10−32

2.163 40.0 0.650 1.537×10−32 0.023×10−32

2.400 45.0 0.650 5.261×10−33 0.079×10−33

2.512 47.5 0.650 3.200×10−33 0.058×10−33

2.623 50.0 0.650 1.946×10−33 0.029×10−33

2.731 52.5 0.650 1.182×10−33 0.018×10−33

2.836 55.0 0.650 7.627×10−34 0.114×10−34

3.036 60.0 0.650 3.206×10−34 0.064×10−34

3.226 65.0 0.650 1.469×10−34 0.029×10−34

3.406 70.0 0.650 7.085×10−35 0.163×10−35

3.730 80.0 0.650 2.039×10−35 0.055×10−35

4.010 90.0 0.650 7.574×10−36 0.258×10−36

4.250 100.0 0.650 3.029×10−36 0.117×10−36

Continued on next page
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Table A.1 –continued from previous page

Q(fm−1) θe(
◦) E0(GeV) dσ/dΩ(cm2/sr) error Ref.

4.219 15.22 3.81×10−34 0.23×10−34 [27]

4.592 16.67 1.56×10−34 0.09×10−34

4.934 18.03 7.16×10−35 0.43×10−35

5.257 19.32 3.60×10−35 0.22×10−35

5.558 20.56 1.94×10−35 0.12×10−35

5.847 21.77 9.89×10−36 0.59×10−36

6.309 23.77 3.58×10−36 0.22×10−36

6.761 25.79 1.39×10−36 0.08×10−36

7.813 30.82 1.32×10−37 0.08×10−37

8.836 27.98 2.33×10−38 0.18×10−38

9.407 33.25 5.18×10−39 0.45×10−39

10.080 36.59 1.29×10−39 0.14×10−39

10.684 36.24 4.43×10−40 0.68×10−40

11.276 39.30 1.17×10−40 0.21×10−40

11.723 37.18 4.69×10−41 1.44×10−41

11.729 41.83 4.46×10−41 1.31×10−41

12.366 40.46 3.48×10−41 1.03×10−41

12.369 45.74 8.08×10−42 8.08×10−42

4.1077 35.67 7.710×10−35 2.89×10−36 [28]

4.4929 33.53 4.330×10−35 1.68×10−36

5.1106 29.83 1.940×10−35 7.76×10−37

5.5000 27.52 1.160×10−35 4.73×10−37

6.2273 23.29 0.520×10−35 2.54×10−37

6.7802 20.27 0.275×10−35 1.54×10−37
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Q(fm−1) θe(
◦) E0(GeV) T20 δT20 ∆T20 T21 δT21 ∆T21 T21 δT21 ∆T21 Ref.

1.74 71.5 0.310± 0.0020 -0.41 0.072
[30]

2.03 70 0.371± 0.0018 -0.58 0.14
0.86 34.5 0.29 -0.30 0.16 [31]
1.15 33.56 0.4 -0.18 0.073 [32]
2.49 14.11 2.02 -0.77 0.16 0.07

[33]
2.93 16.62 2.02 -1.32 0.32 0.11

3.566 21. -2.01 1.13 [34]
3.78 a 80.9 0.653 -1.24 0.17 0.11 0.21 0.48 0.15

[35, 104]4.22 78.7 0.755 -0.82 0.15 0.42 0.14 -0.05 0.10
4.62 76.7 0.853 -0.41 0.18 0.57 0.17 -0.04 0.13
1.58 32.81 0.565 -0.401 0.024 0.028 0.022 0.019 0.003 [36, 72]

2.026 34.07 0.704 -0.713 0.082 0.036
[37, 59] b2.352 40.24 0.704 -0.897 0.081 0.045

2.788 49.07 0.704 -1.334 0.223 0.066
4.090 35.584 -.546 0.174 .463 0.124 .087 0.056

[38]

4.460 33.349 -.322 0.093 .315 0.093 -.027 0.048
5.090 29.751 .191 0.054 .201 0.088 -.018 0.041
5.470 27.327 .301 0.074 .220 0.109 .022 0.051
6.150 22.968 .625 0.169 .166 0.111 -.023 0.073
6.640 19.789 .477 0.189 .001 0.162 -.133 0.088
2.900 16.8 2.0025 -1.294 0.084 0.088 0.234 0.094 0.015

[39]

3.143 18.3 2.0025 -1.398 0.100 0.093 0.318 0.165 0.020
3.432 20.1 2.0025 -1.384 0.102 0.092 0.521 0.168 0.033
3.808 22.5 2.0025 -0.982 0.169 0.066 0.435 0.177 0.027
4.204 25.1 2.0025 -0.818 0.269 0.058 0.808 0.289 0.051
4.643 28.1 2.0025 0.557 0.342 0.044 0.299 0.414 0.019

a This T22 measurement is not consistent with the rest of GM data and is a 3-σ outlier in the gloabal fit. It is nevertheless
included in the fit which includes all polarized measurements.

b The listed values are for T20(70
◦).

Table A.2: World data for polarized deuteron observables used in the global parameterizations. The sign of T21 is
negated following the convention set by the recoil polarimeter experiments.
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