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Abstract

Elastic form factors are fundamental quantities that characterize the electromagnetic struc-
ture of the nucleon. High precision measurements of these quantities are essential in under-
standing the structure of hadronic matter.

Although the proton elastic form factors are well known, knowledge of the neutron form
factors has been limited due to the lack of pure neutron targets. Few nucleon targets,
deuterium in particular, are typically used to study the electromagnetic structure of the
neutron. Cross section measurements are not sufficient for high precision determination of
the electric form factor of the neutron, Gn

E, due to its small value. Recently, experiments
using polarization observables which are proportional to the product of the electric and
magnetic form factors of the neutron have been used instead. Such measurements require
highly polarized electron beams and either a vector polarized neutron target (typically 2H)
or else a neutron final state polarimeter.

The Bates Large Acceptance Spectrometer Toroid (BLAST) provides a unique opportu-
nity to measure the shape of the neutron electric form factor at low momentum transfers.
BLAST combines a high duty-factor polarized electron beam in the South Hall Ring (SHR),
an Atomic Beam Source (ABS) target of highly polarized deuterium atoms and a large ac-
ceptance detector. This work reports the results of measurements of the neutron electric
form factor using the 2 ~H(~e, e′n)p reaction at five 4-momentum transfer squared, Q2, points
of 0.14, 0.20, 0.29, 0.38 and 0.50 (GeV/c)2 using data taken in 2004. The experimental setup
is discussed in detail and the results for Gn

E are presented and discussed in the context of
various theoretical predictions.

A fit to the world’s data including new BLAST data determines Gn
E to ±6.5% over

0 < Q2 < 1 (GeV/c)2. The best fit includes contributions from a low Q2 bump and a
smooth dipole term.

Thesis Supervisor: Richard Milner
Title: Professor
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Chapter 1

Introduction

The discovery of the neutron and subsequent study of the deuterium atom have played a

key role in the development of the theory of nuclear force. In the 1932, right before the

discovery of a neutron, there was no acceptable theory explaining the structure of a nucleus.

The atoms were shown by Rutherford to consist of a massive core, nucleus, and super light

particles, electrons, ”orbiting around” the nucleus. The nuclei themselves were also shown

by Rutherford to consist of positively charged particles named protons. However, there was

a discrepancy between the mass and the charge of those nuclei. To account for this problem

a proton-electron pair inside of the nucleus was introduced.

In 1932 J. Chadwick [1] discovered a neutral particle, then thought to be that proton-

electron pair. By scattering α-particles from the beryllium target he observed a signal

consistent with an emission of a neutral particle. The energy conservation relation led him

to conclude that the emitted particle had a mass 1 (in atomic units). However, in a series of

papers Heisenberg showed from quantum mechanics that there cannot be a neutral spin- 1
2

proton-electron pair [2, 3]. Instead, this was an elementary particle with no charge and a

spin of 1/2. At this point the picture of an atom’s nucleus became clearer. It consisted of

positively charged protons and neutrally charged neutrons.

However, two mysteries still remained. The first mystery had to do with an experiment

that was conducted by R.Frisch and O. Stern [4]. They found that the magnetic moment

of a proton deviated strongly from the simple magnetic moment of a structureless spin- 1
2

particle. The only satisfactory explanation was that a proton had a finite structure. The
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second mystery was the existence of the neutron itself. The electromagnetic force will cause

the nucleons inside of a nucleus to be repelled since there are only positively and neutrally

charged particles. Clearly, there had to be another, stronger, force that was responsible

for containing protons and neutrons together. This force had to be electric charge neutral,

which meant that the nucleons had to have an additional quantum number(s) to couple to

this unknown force.

To further study these problems it was important to find a source of free or quasi-free

neutrons. This was the diplon or as it is know now deuterium, discovered by H. Urey [5].

The deuteron is the only known bound two nucleon system. After physicists had developed a

way to isolate the isotope of deuterium, Chadwick and Goldhaber conducted the first photo-

disintegration experiment [6]. By measuring the energy of a recoiled proton and knowing the

energy of the photon, they were able to measure the deuteron binding energy of 2.1 MeV and

determine the mass of a neutron to be 1.008 ± 0.0005 amu (atomic mass units). Moreover,

Chadwick and Goldhaber showed the feasibility of using deuterium as a source of quasi-free

neutrons. From this moment deuteron became a heavily studied N-N system. Most of the

current knowledge about the neutron was obtained from studies on the deuteron.

It is now known that the nucleons (proton and neutron) are extended objects consisting

of quarks and gluons. Quantum Chromodynamics, the standard model theory of the strong

force points to a complex electromagnetic distribution inside of a nucleon. The precise

knowledge of these distributions constrains quark-gluon models making them more precise

and more realistic. Better knowledge of the electromagnetic structure of a nucleon also

benefits better description of the nucleon-nucleon forces in deuterium and heavier nuclei.

The structure of the nucleon is principally studied by high energy electromagnetic probes.

The most popular of these probes are the lepton beams (electrons or muons), since leptons

are structureless elementary particles. The lepton probes are called “clean probes” since

their electromagnetic interactions are well understood from QED. In lepton scattering the

nucleon is probed by a single virtual photon in a one photon exchange approximation which

is emitted by a lepton. The size of the four-momentum transfer, Q of a virtual photon

determines the scale at which a nucleon is probed. The de Broglie wavelength of the virtual

photon λ ≈ 1/Q has to be of the order of the size of a nucleon, ∼ 1 fm in order to be sensitive
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to the internal structure of the nucleon .

Today, medium energy electron scattering experiments are used as a tool to study the nu-

cleon structure at the Jefferson Laboratory, Mainz and the Bates Linear Accelerator Center.

Also, high energy lepton scattering is used to study nuclear interactions in the perturbative

regime at the HERA Ring in Germany and the COMPASS muon scattering experiment at

CERN.
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Chapter 2

Theoretical Background

In this chapter, the theoretical framework for determination of the neutron’s electric form

factor, Gn
E is reviewed. Initially the theoretical description of elastic electron-nucleon scat-

tering is presented. Both unpolarized and polarized elastic scattering are discussed. Then

the theoretical description of the deuteron is introduced by discussing the latest models of

the nucleon-nucleon bound state (Bonn and V18) and their relation to the static (Q2 = 0)

and dynamic (Q2 > 0) properties of the deuteron. The model dependent extraction of Gn
E

from elastic electron-deuteron scattering follows. Next, the determination of Gn
E in polar-

ized electron-deuteron quasielastic scattering is described. In conclusion, an overview of the

latest progress in the theory of the electromagnetic properties of the nucleon is presented.

2.1 Unpolarized Elastic Electron-Nucleon Scattering

An electron with initial four-momentum, Kµ = (E , ~k) acquires recoil momentum, K ′µ =

(E ′, ~k′) when it scatters off a nucleon by exchanging a virtual photon with four- momentum

Qµ = (ω, ~q) = Kµ − K ′µ = (E − E ′, ~k − ~k′). The four-momentum of the recoil nucleon is

defined as P µ
f = Qµ +P µ

i , where P µ
i is the initial four-momentum of the nucleon. The initial

three-momentum of the nucleon in the fixed target experiments is ~pi = 0 in a lab frame and

the initial energy, Ei is equal to the nucleon mass, Mi.
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Following Bjorken and Drell [7] the most general differential cross section can be written as

dσ =
m2

e

|~k|
d3~k′

E ′(2π)3

d3~pf

Ef (2π)3
Mi

∑

if

|Mfi|2(2π)4δ4(Kµ + P µ
i − K ′µ − P µ

f ), (2.1)

where me is the mass of the electron. By integrating over the final three-momentum, ~pf and

µK

µK’
µQ

µ
iP

µ
fP

Figure 2-1: The tree-level Feynman diagram of electron-nucleon elastic scattering.

by using the differential form d3~k′ = k′2dk′dΩe, the differential cross section becomes1

dσ

dΩe
=

m2
eE ′

4π2E f−1
rec

∑

if

|Mfi|2, (2.2)

where frec is a nuclear recoil factor given in the extreme relativistic limit (me << E ′) by

frec = 1 +
2E
Mi

sin2

(

θe

2

)

. (2.3)

The sum in eqn. 2.2 is the average over the initial leptonic and hadronic states and the sum

over all final states. Mfi is the invariant matrix element representing the factorized product

1Here the four-momentum conserving delta-function is used with the identity ∂k′

∂E′
= E′

k′

18



of the leptonic and hadronic currents, jµ
e (K ′, K) and Jµ(Pf , Pi), respectively. Accordingly,

Mfi =
ie

Q2
jµ
e (K ′µ, Kµ)Jµ(P µ

f , P µ
i ), (2.4)

where the leptonic current represents the electron vertex in the tree-level Feynman scattering

diagram (fig 2-1). Since the electron is a structureless, spin- 1
2

particle, the current jµ
e is simply

expressed by combination of the Dirac spinors, ue and ūe,

jµ
e (K ′µ, S ′; Kµ, S) = ūe(K

′µ, S ′)γµue(K
µ, S), (2.5)

where S and S ′ are the spins of the incident and scattered electron, respectively.

If the nucleon is also a structureless point particle, its current can be defined in a similar

fashion,

Jµ
n (P µ

f , Sf ; P
µ
i , S) = ūn(P µ

f , Sf)γ
µun(P µ

i , S), (2.6)

The differential cross section of the electron scattered by the structureless spin- 1
2

particle is

obtained by combining eqns. 2.2, 2.4, 2.5 and 2.6.

dσ

dΩe
=

(

dσ

dΩe

)

M

f−1
rec

{

1 + 2τ tan2

(

θe

2

)}

, (2.7)

where τ is the convenient kinematic variable, defined as τ ≡ Q2/(4M2
n) and Q2 is defined

as the negative of the 4-momentum squared of the virtual photon (Q2 ≡ −QµQµ). The

quantity ( dσ
dΩe

)M is the Mott cross section, which is the extension of the Rutherford cross

section to the scattering of a relativistic, spin- 1
2

particle [8, 9]

(

dσ

dΩe

)

M

=
α2cos2

(

θe

2

)

4E2sin4
(

θe

2

) , (2.8)

where α is the fine-structure constant. The last term in the equation 2.7 reflects the fact

that the target nucleon is the spin- 1
2

particle.

However, the scattering formalism needs to be extended to a nucleon with an extended

internal structure. The most complete form of the electromagnetic hadronic current that

19



satisfies current and parity conservation2 is

Jµ(P µ
f , Sf , η; P µ

i , S) = ū(P µ
f , Sf , ηf){γµF η

1 (Q2) +
i

2Mi
σµνQνF

η
2 (Q2)}u(P µ

i , Si, ηi), (2.9)

where η is the isospin quantum number and the functions F1(Q
2) and F2(Q

2) represent the

unknown extended electromagnetic structure of the nucleon. The Dirac form factor, F1(Q
2)

represents the charge distribution, whereas the Pauli form factor, F2(Q
2) represents the

magnetization distribution inside of the nucleon. Accordingly, the boundary conditions of

the form factors are defined by the static electromagnetic properties of a nucleon with an

isospin η,

F η
1 (Q2 = 0) =











1 η = +1
2

↔ proton

0 η = −1
2

↔ neutron
(2.10)

F η
2 (Q2 = 0) =











kp = 1.79 η = + 1
2

↔ proton

kn = −1.91 η = − 1
2

↔ neutron
(2.11)

The differential cross section in terms of these structure function has well known Rosenbluth

form [10]:
dσ

dΩe

=

(

dσ

dΩe

)

M

f−1
rec

{

(

F 2
1 + τF 2

2

)

+ 2τ(F1 + F2)
2tan2

(

θe

2

)}

(2.12)

A more convenient form for the nucleon elastic form factors has been suggested by Sachs et

al. [11]. By moving to a special frame defined by the following kinematic condition,

E ′ = E
~k = −~k′, (2.13)

the Dirac spinor in eqn. 2.9 can be re-written as

P µ
f = −P µ

i =⇒ ū(P µ
f , Sf , ηf) = ū(−P µ

i , Sf , ηf ) (2.14)

This frame is known as the Breit or the “brick wall”3 frame where the energy transfer,

2Current conservation is expressed as QµJµ = 0.
3The name “brick wall” comes from the fact that the electron behaves kinetically like a ball bouncing off
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ω = 0. In the Breit frame, the Sachs electric and magnetic form factors GE(Q2) and

GM(Q2) associated with the transfer of zero and one unit of the angular momentum along

the direction of the virtual photon are the true representation of the electric and magnetic

distributions of the nucleon. The Dirac and Pauli form factors can be written as a linear

combination of the Sachs form factors as

F1 =
1

1 + τ
[GE + τGM ]

F2 =
1

1 + τ
[GM − GE]

































GE = F1 − τF2

GM = F1 + F2

, (2.15)

The Rosenbluth cross section in eqn. 2.12 in terms of the Sachs form factors becomes

dσ

dΩe
=

(

dσ

dΩe

)

M

f−1
rec

{

G2
E + τG2

M

1 + τ
+ 2τG2

M tan2

(

θe

2

)}

(2.16)

In the non-relativistic limit, the Sachs form factors are interpreted as the Fourier transforms

of spacial distributions of charge, ρcharge(~r) and magnetization, ρmag(~r) inside of the nucleon,

GE(Q2) =
∫

ρcharge(~r)e
−i~q·~rd3r (2.17)

GM(Q2) =
∫

µρmag(~r)e
−i~q·~rd3r, (2.18)

where µ is the nucleon dipole magnetic moment (µp = 1 + κp and µn = κn). In this context,

it is possible to define the nucleon charge and magnetization mean square radius by Taylor

expansion of eqns. 2.17 and 2.18 around Q2 = 0. The expectation values of the charge and

magnetic radii are defined as

〈r2
charge〉 =

∫

r2ρcharge(~r)d
3r = −6

dGE

dQ2
|Q2→0 (2.19)

〈r2
mag〉 =

∫

r2ρmag(~r)d
3r = − 6

µ

dGM

dQ2
|Q2→0 (2.20)

The interpretation of the mean square charge radius of the proton and especially of the

neutron has been a point of much discussion in the literature. The neutron square charge

radius can be written [12] as a sum of the square radius associated with the neutron rest

a brick wall
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frame charge distribution, r2
1,n and the Foldy term [13], r2

Foldy,n. The Foldy term arises from

the relativistic corrections associated with the neutron magnetic moment. Isgur [12] showed

that in certain models the Foldy term is canceled exactly by the contribution from the Dirac

form factor F1. Thus, rcharge as defined in eqn. 2.19 predicts exactly the rest frame charge

distribution of the neutron.

2.1.1 Form Factor Data from Unpolarized Scattering

The proton electric and magnetic form factors have been measured extensively in unpolarized

electron scattering using the Rosenbluth separation technique. In the Rosenbluth separation

scheme, the differential cross section 2.16 is re-written in the following form

(

dσ

dΩe

)

/

(

dσ

dΩe

)

M

(

(1 + τ)ε

τ

)

=
ε

τ
(Gp

E)
2
+ (Gp

M)
2
, (2.21)

where ε is a measure of the longitudinal polarization of the virtual photon. If the value of

Q2 is fixed, this quantity is a function of electron scattering angle, θe only, i.e.

ε =

[

1 + 2(1 + τ) tan2

(

θe

2

)]−1

0 ≤ ε ≤ 1

(2.22)

The form factors are extracted from the linear fits in ε, by keeping the momentum transfer

constant. The electric form factor term in eqn. 2.21 is inversely proportional to Q2 through

the kinematic factor, τ . Thus, at a low momentum transfer the Rosenbluth measurement is

very sensitive to (Gp
E)2, whereas at large Q2 it is dominated by (Gp

M)2.

Gp
E is well known from Rosenbluth separation measurements in the range of Q2 up to 5

(GeV/c)2 and Gp
M is known up to 30 (GeV/c)2. Compiled in fig. 2-2 are the present data

on the electromagnetic form factors of the proton measured in unpolarized electron scatter-

ing experiments. The electric and magnetic form factors of the proton can be reasonably

described by the dipole form factor, GD over a large momentum transfer range. The dipole

form is most commonly written as

Gp
E ≈ Gp

M/µp ≈ GD ≡ 1

(1 + Q2/Λ)2
(2.23)
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Figure 2-2: Elastic electric (left) and magnetic (right) form factors of the proton from the
unpolarized electron scattering experiments plotted as a ratio to the dipole form factor. Gp

E

data are taken from references [14, 15, 16, 17, 18, 19]. Gp
M data are taken from references

[20, 17, 21, 22, 18, 23, 19].

where Λ = 0.71 (GeV/c)2 is the global dipole fit parameter to the data. The dipole form

factor is a Fourier transform of the exponential, radially symmetric charge and magnetization

distributions [24],

GD =
Λ3/2

2π

∫

e−
√

Λr sin(qr)

q
rdr (2.24)

Since there is no free neutron target, the magnetic form factor of the neutron is typically

measured with 2H and more recently 3He targets. Because Gn
M is almost two orders of

magnitude larger than the Gn
E, the exclusive4 quasielastic scattering cross section is almost

purely determined by the magnetic form factor. However, there are two difficulties with

the X(e, e′n) cross section measurement. Firstly, the cross section is modified by the finite

motion of the neutron in the nuclear target and by the final state interaction of the recoil

nucleons5

The second difficulty stems from the uncertainty in the absolute cross section measure-

4The neutron is detected in the final state to insure that the electron scatters off the neutron.
5The issue of initial and final interactions is further discussed in section 2.4.2.
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Figure 2-3: World data on the elastic magnetic form factor of the neutron. Data are taken
from references [25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. Open points are the cross section
measurements and where the neutron detection efficiency was determined from a known
nuclear reaction and filled points are the polarization measurements or experiments where
the neutron detection efficiency was measured with the neutron beams.

ment due to the neutron detection efficiency. This difficulty can be overcome by using

polarized scattering, where the detection efficiency cancels out to the first order.

For completeness, fig. 2-3 combines all the unpolarized and polarized measurements of

Gn
M . Although the data are still lacking, it appears that neutron’s magnetic form factor

can also be parametrized with the dipole form factor in eq. 2.24. There is a significant

discrepancy between most polarization and cross section measurements of Gn
M where the

neutron detection efficiency was calibrated using a known nuclear reaction. Jourdan and

collaborators [35] published a paper critiquing the method used by Bruins et al. [33] to

calculate the neutron efficiency in the cross section measurement, thus casting doubt on

their results for Gn
M which is in significant disagreement with the polarization experimental

data.
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Due to the smallness of the neutron’s electric form factor, for a long time the only reliable

unpolarized data on Gn
E were extracted from the unpolarized elastic scattering on deuterium.

These experiments will be discussed in detail in section 2.4.

2.2 Polarized Elastic Electron-Nucleon Scattering

µK

µK’

µQ

µ
fPS

eθ
*θ

*φ

xθ

Scattering Plane

Target Plane

Figure 2-4: Schematic representation of polarized electron-nucleon scattering in the limit of
single photon exchange.

The discussion of polarized electron-nucleon scattering is largely based on the review

articles by Donnelly and Raskin [36, 37] and by Arenhövel, Leidemann and Tomusiak [38].

Figure 2-4 shows the schematic representation of this type of scattering. The kinematic

variables are defined in the same way as in the unpolarized case. However, for each po-
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larization vector, an additional kinematic plane needs to be defined to fully describe the

reaction mechanism. In the case of a longitudinally polarized electron the Scattering Plane

is introduced (see fig. 2-4). Typically this plane’s definition follows the so-called Madison

convention, defined by the following identities

ẑ ≡ ~q

|q| , ŷ ≡
~k × ~k′

|k||k′| , x̂ ≡ ŷ × ẑ. (2.25)

With a polarized target, there is another kinematic plane added. It is denoted as the Target

Plane in fig. 2-4. The target plane is defined by the target polarization vector ~S, with

respect to the scattering plane as

~S = (sinθ∗cosφ∗, sinθ∗sinφ∗, cosθ∗) , (2.26)

where θ∗ is the polar angle between the target spin vector and the three-momentum transfer

vector and φ∗ is the azimuthal angle of the target spin direction relative to the scattering

plane.

In the one-photon approximation the most general differential cross section is given by

dσ

dΩe

= C{ρLfL + ρT fT + ρLT fLT + ρTT fTT + hPz(ρ
′
LT f ′

LT + ρ′
T f ′

T )}, (2.27)

where h is the electron polarization, Pz is the target polarization and C = α
6π2

E ′

EQ2 . The

virtual photon density matrices, ρµµ have to be boosted into the inertial frame in which the

structure functions, fµµ are evaluated

ρL = −β2Q2 ξ2

2η
, ρLT = −β2Q2 ξ

η

√

ξ + η

8

ρT = −1

2
Q2

{

1 +
ξ

2η

}

, ρTT = Q2 ξ

4η

ρ′
LT = −1

2
βQ2 ξ√

2η
, ρ′

T = −1

2
Q2

√

ξ + η

η
,

(2.28)

where,

β =
|~qlab|
|~qbreit| =

√
1 + τ , ξ =

Q2

|~qlab|2 , η = tan2

(

θe

2

)

(2.29)

In the Breit frame, the structure functions can be explicitly written in term of the nucleon
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electromagnetic current, Jµ and the initial nucleon density matrix, ρN . These quantities

are defined in terms of the Sachs form factors, Pauli matrices and the target polarization

vector as

Jµ = (GE, i
q

2Mβ
GMσx,−i

q

2Mβ
σy, 0) (2.30)

ρN =
1

2
(1 + Pz

~S · ~σ) (2.31)

where M is the mass of a nucleon, β is defined in eq. 2.29 and ~σ is the vector of Pauli

matrices in the coordinate system defined in eq. 2.25.

Using eqns. 2.30 and 2.31 along with the known properties of Pauli matrices, the structure

functions, fµµ can be written as [38]

fL = Tr(J0ρNJ†
0) = G2

E (2.32)

fT = Tr(JxρNJ†
x) + Tr(JyρNJ†

y) = 2τG2
M (2.33)

fLT = −
√

2
{

Tr(J0ρNJ†
x) + Tr(JxρNJ†

0)
}

= 0 (2.34)

fTT = −Tr(JxρNJ†
x) + Tr(JyρNJ†

y) = 0 (2.35)

f ′
LT =

√
2
{

Tr(J0ρNJ†
y) + Tr(JyρNJ†

0)
}

= −2
√

2τGEGMS⊥ (2.36)

f ′
T = −i

{

Tr(JxρNJ†
y) + Tr(JyρNJ†

x)
}

= −2τG2
MS‖ (2.37)

The differential cross section in eqn. 2.27 can be rewritten by combining eqns. 2.28 and

2.32-2.37 as

dσ

dΩe

= Σ0

{

1 + hPz
~S · ~AeN

}

, (2.38)

where,

Σ0 = C
(

ρLG2
E + 2τρT G2

M

)

(2.39)

is the unpolarized elastic cross section. The polarized term in the cross section can be

expressed by the components of ~AeN associated with the direction of the target polarization
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vector, ~S as

A
‖
eN = −C

2τρ′
T G2

M

Σ0
(2.40)

A⊥
eN = −C

2
√

2τρ′
LT GEGM

Σ0

(2.41)

Aoop
eN = 0 (2.42)

The asymmetry measured in parallel kinematics, where the momentum transfer is parallel

to the target spin vector, is proportional to the nucleon’s magnetic form factor squared. The

asymmetry in perpendicular kinematics is proportional to the product of the magnetic and

electric form factors.

If the asymmetries in both kinematic regimes are measured simultaneously, one can build

a so-called super ratio as

A⊥
eN

A
‖
eN

=

√

2

τ

ρ′
LT GE

ρ′
T GM

. (2.43)

In the super ratio measurement, the beam and target polarizations drop out. Therefore, this

measurement is less sensitive to the systematic uncertainties of the product of beam and

target polarizations, hPz.

It follows from equation 2.38 that polarized beam alone does not produce additional infor-

mation about the structure of the nucleon in elastic electron-nucleon scattering as compared

to unpolarized scattering. The target also has to be polarized.

2.2.1 Proton Elastic Form Factors from Polarization Measure-

ments

The measurement of the asymmetry in the double polarized electron-nucleon scattering is

a very sensitive method to determine the nucleon electromagnetic form factors. However,

these experiments are difficult since they require highly polarized electron beam and target.

Alternatively, a technique was developed by Milbrath et al. [39, 40], where the polarization

of the recoiling proton is measured in a polarized electron scattering on an unpolarized 1H

target. It can be shown that such a polarization transfer measurement also probes the

nucleon form factors in a similar fashion as in eqns. 2.40 and 2.41.
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High precision data on µpG
p
E/Gp

M became available within the last five years from mea-

surements using the recoil proton polarimeters at Jefferson Lab [41, 42, 43]. These measure-

ments consistently show a steep decrease of the µpG
p
E/Gp

M ratio at Q2 > 1 (GeV/c)2 (see fig.

2-5). The decrease of the form factor ratio is in strong disagreement with the unpolarized
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Figure 2-5: Proton form factor ratio, µpG
p
E/Gp

M from recoil polarization experiments. Data
points are taken from [40, 41, 42, 44, 43].

measurements, as noted by Arrington [45]. A possible explanation could be a correction due

to the two-photon contribution to the unpolarized scattering becoming significant at large

momentum transfer. However, it appears that the two-photon contribution to the polarized

measurement is small [46].
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2.3 Polarized Elastic Electron-Deuteron Scattering

2.3.1 Deuteron Ground State Wave Function

The deuterium nucleus is the only known bound state of two nucleons. The neutron and

proton, both spin-1
2

particles, combine to form a spin-1 bound nucleon-nucleon state with

a positive parity. This indicates the presence of a spin and orbital angular momentum

dependent force in the nucleon-nucleon potential (i.e. spin-spin, spin-orbit and tensor) [47].

The most general form of the non-relativistic Hamiltonian can be written as [48]

H =
∑

i

− h̄2

2m
∇2

i +
∑

i<j

Vij, (2.44)

A non relativistic wave function of the deuteron in coordinate space can be written in general

as [49]

ΨM(~r) =
u(r)

r
Y00(r̂)|1, ms〉 +

w(r)

r
Y00(r̂)

∑

ms

Y2m−ms
(r̂)〈21m − msms|1m〉|1, ms〉, (2.45)

where the Ylml
are spherical harmonic wave functions and states |1, ms〉 represent a spin-1

multiplets for ms = ±1, 0. In eqn. 2.45 u(r)/r and w(r)/r represent the spatial components

of the reduced S− and D-wave functions in coordinate space6. These wave functions are

Fourier transformed into the momentum space using Bessel’s functions, jl(pr) as

u(~p) =
∫ ∞

0
rdru(r)j0(pr)

w(~p) =
∫ ∞

0
rdrw(r)j2(pr). (2.46)

The normalization condition for the u(r) and w(r) wave functions in terms of S− and D-wave

probability densities is

PS

[

=
∫ ∞

0
dru2(r)

]

+ PD

[

=
∫ ∞

0
drw2(r)

]

= 1. (2.47)

While the angular properties of the wave function are explicitly dependent on the orbital

6Since the deuteron has a positive parity, only the wave functions with even angular momentum are
allowed.
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and total angular momenta, the radial wave function is determined by the choice of the

potential Vij in eqn. 2.44. In this work the emphasis is on the Bonn [50] potential. The

choice of this potential is driven by the fact that all of the theoretical calculations performed

for this work by H. Arenhövel were done using the Bonn potential. Figure 2-6 shows u(r) and

w(r) radial wave function in coordinate space and the corresponding probability densities

ρS(p) and ρD(p) in momentum space.
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Figure 2-6: On the left are the S-wave (solid) and D-wave (dotted) components of a deuteron
radial wave function determined with the Bonn [50] potential in the coordinate (left) multi-
plied by r2. On the right are the densities of S (solid) and D (dotted) wave functions in the
momentum space.

A successful nucleon-nucleon potential must be able to precisely predict the static prop-

erties of the deuteron. One of these static properties is the root mean square matter radius7

of the deuteron, rd defined as a half distance between two nucleons in the deuteron. The

matter radius is expressed in terms of the wave function as

rd =
1

2

{∫ ∞

0
r2dr

[

u2(r) + w2(r)
]

} 1
2

. (2.48)

This static quantity is not very sensitive to the D-wave component of the wave function,

7Not to be confused with a charge radius.
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since the S-wave state is a significantly larger contributer to the integral in eqn. 2.48.

A more interesting static property of the deuteron is its electric quadrupole moment,

written as

Qd =
1√
50

∫ ∞

0
r2drw(r)

[

u(r) − w(r)√
8

]

(2.49)

This quantity is explicitly proportional to the size of the D-wave component in the wave

function. Hence, its measurement is a very sensitive test for the deuteron model.

Analogously the magnetic dipole moment of the deuteron can be defined entirely in terms

of the D-wave probability, PD [47]

µd = (µp + µp)(1 − 3

2
PD) +

3

4
PD = 0.8798 − 0.5697PD, (2.50)

where µp and µn are the magnetic moments of the proton and neutron respectively.

Another interesting static property of the deuteron is the asymptotic behavior of the

wave function as r → ∞8. In this limit the wave functions are parametrized as [50].















u(r → ∞) → ASe−γr

w(r → ∞) → ADe−γr

(

1 +
3

γr
+

3

γ2r2

)

,
(2.51)

where γ =
√

4M2
p M2

n − (M2
d − M2

p − M2
n)2/2Md = 0.2315380 fm−1 with Md, Mn and Mp

being the masses of a deuteron, neutron and proton, respectively. The ratio of the asymptotic

normalization factors AS and AD is a good test of the theoretical models, since it explicitly

establishes the relative sizes of S and D-wave function in the p → 0 limit.

The relative size of the D-wave component is still uncertain. Also, the interpretation of

the D-wave contributions to the dipole and the quadrupole moments is subject to relativistic

corrections and meson exchange currents.

Table 2.1 shows the experimental measurements of these static properties and the cal-

culations using the Bonn [50] potential and another modern potential, Argonne V18 [51].

Calculations using both potentials predict the static properties of the deuteron relatively

well. However, some discrepancies still remain. One of these discrepancies is due to the fact

that both potentials underestimate the size of the electric quadrupole moment, while cor-

8This corresponds to the asymptotic behavior at p → 0 in the momentum space.
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Properties Recent data AV18 Bonn
µd 0.8574382284(98)µN 0.871µN

9 0.852µN
10

Qd 0.2859(3)fm2 0.275fm2 9 0.270fm2 10

AD/AS 0.0256(4) 0.0250 0.0256
rd 1.975(3)fm 1.967fm 1.966fm
Ed 2.22456612MeV 2.224575MeV 2.224575MeV

Table 2.1: Comparison between recent data on the static properties of the deuteron and
theoretical predictions by the Argonne V18 [51] and Bonn [50] potentials. The table is taken
from the review paper by Garc̃on [47]. Refer to this paper for all citations.

rectly predicting the size of the magnetic dipole moment. These inconsistencies indicate that

despite the successes of the modern nucleon-nucleon potentials, there is still some theoretical

work that remains to be done.

2.3.2 The Elastic Form Factors of the Deuteron

In addition to its static properties, the deuteron has a dynamical electromagnetic structure.

The observables that correspond to the internal properties of the deuteron are best measured

in the elastic electron scattering. These observables are of the great interest, since they can

potentially access the density distributions of the S− and D-wave functions in the momentum

space. Similarly to electron-nucleon scattering, the electron-deuteron scattering amplitude

is a product of the leptonic (eqn. 2.5) and hadronic currents. The most general form of the

deuteron hadronic current in terms of the elastic form factors is [52]

Jµ
d (P µ

f , Sf ; P
µ
i , Si) = −G1(Q

2)
[

ξµ∗
Sf

(Pf ) · ξµ
Si

(Pi)(Pf + Pi)
µ
]

−G2(Q
2)
[

ξµ
Si

(Pi)(ξ
µ∗
Sf

(Pf ) · (Pf − Pi)
µ) − ξµ∗

Sf
(Pf)(ξ

µ
Si

(Pi) · (Pf − Pi)
µ)
]

+G3(Q
2) 1

2M2
d

[

ξµ∗
Sf

(Pf ) · (Pf − Pi)
µ(ξµ

Si
(Pi) · (Pf − Pi)

µ)(Pf + Pi)
µ
]

,

(2.52)

where Pi and Pf are the initial and final momenta of the deuteron respectively and ξµ
Si

and ξµ
Sf

are the initial and final polarization four-vectors. The form factors G1 and G2 are

analogous to the Dirac and Pauli form factors of the nucleon. The additional form factor,

G3, is due to the deuteron being a spin-1 particle. In direct analogy with the nucleon Sachs

form factors, the deuteron elastic form factors can be identified with the charge, magnetic

9Corrected for relativistic effects and meson exchange currents (MEC)
10Not corrected for relativistic effects and MEC
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and an additional electric quadrupole form factor. These quantities are written in terms of

the form factors Gi in eqn. 2.52 as [52]

GC(Q2) = G1(Q
2)(

2

3
η + 1) − 2

3
ηG2(Q

2) +
2

3
η(1 + η)G3(Q

2)

GM(Q2) = G2(Q
2)

GQ(Q2) = G1(Q
2) − G2(Q

2) + (1 + η)G3(Q
2),

(2.53)

where η is the kinematic parameter equivalent to the parameter τ in the elastic electron-

nucleon scattering, η = Q2/(4Md)
2.

The measurements of the deuteron form factors provide an additional constraint on the

theoretical models of the deuteron.

2.3.3 Elastic Electron-Deuterium Scattering

In the simplest case of the elastic scattering of the unpolarized electron beam from the

unpolarized deuterium target, the form of the differential cross section is similar to the

elastic electron-nucleon unpolarized cross section in eqn. 2.16.

dσ

dΩe

=

(

dσ

dΩe

)

M

f−1
rec

{

A(Q2) + B(Q2)tan2

(

θe

2

)}

(2.54)

Therefore, the technique of the Rosenbluth separation introduced earlier in this chapter,

can be applied to electron-deuteron elastic scattering cross section in eqn. 2.54 in order to

determine elastic form factors, A(Q2) and B(Q2) separately. These elastic form factor are

the linear combination of the three electromagnetic form factors GC , GM and GQ introduced

in eqn. 2.53.

A(Q2) = G2
C(Q2) +

8

9
η2G2

Q(Q2) +
2

3
ηG2

M(Q2)

B(Q2) =
4

3
η(1 + η)G2

M(Q2)
(2.55)

Both A(Q2) and B(Q2) are reasonably well-determined quantities11 up to a momentum

transfer of Q2 = 4 (GeV/c)2. However, the unpolarized elastic scattering observables by

themselves are not sufficient to independently determine all three electromagnetic form fac-

11A 10 % discrepency in A(Q2) remains between separate experimental data sets.
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Figure 2-7: World’s data for the observable A(Q2). The data were compiled by the Jefferson
Lab Hall C T20 collaboration [53] from references [54, 55, 56, 57, 58, 59, 60, 61, 62, 63].The
curves are theoretical predictions based on the Bonn OBEPQ-B potential [64] with non
relativistic nucleon current (dashed), relativistic nucleon current(dotted), relativistic nucleon
current with π, ρ and heavy meson exchange currents (solid).
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36



tors of the deuteron. Hence, at least one more observable is needed.

The new observables are introduced by using a tensor polarized target in elastic scattering.

Using Donnelly and Raskin formalism [36], the polarized differential cross section is expressed

as 12.

dσ

dΩe
=

(

dσ

dΩe

)

M

f−1
recR0

[

1 +
1√
2
PzzP

0
2 (cosθ∗)T20(Q

2) − 1√
3
PzzP

1
2 (cosθ∗)cosφ∗T21(Q

2)+

+
1

2
√

3
PzzP

2
2 (cosθ∗)cos2φ∗T22(Q

2)

]

R0 = A(Q2) + B(Q2)tan2

(

θe

2

)

,

(2.56)

where Pzz is the tensor polarization of the deuterium target, θ∗ and φ∗ are the angles of

the target polarization vector with respect to the momentum transfer direction and P i
l are

associated Legendre polynomials. The tensor polarization observables, Tij are written in

term of the electromagnetic form factors as

T20 = − 1√
2R0

[

8

3
ηGC(Q2)GQ(Q2) +

8

9
η2G2

Q(Q2) +
1

3
η

(

1 + 2(1 + η) tan2

(

θe

2

))

G2
M(Q2)

]

T22 = − 1

2
√

3R0

ηG2
M(Q2)

T21 = − 2√
3R0

η

[

η + η(1 + η) tan2

(

θe

2

)] 1
2

GM(Q2)GQ(Q2)

(2.57)

Since it is the largest of the three tensor polarization observables, T20 is typically the

third elastic scattering observable of choice used to separate GC , GM and GQ. Figures

2-7, 2-8 and 2-9 show the world’s data on the unpolarized elastic scattering observables

A(Q2) and B(Q2) and tensor polarized observable T20(Q
2) compiled by the Jefferson Lab

T20 collaboration [62, 67]. The availability of high precision T20 data is still lacking. The

precision in the determination of GC , GM and GQ form factors is limited by the inadequate

knowledge of the T20 polarization observable.

12The electron beam’s polarization is taken to be zero for simplicity of discussion.
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Figure 2-9: World’s data for the T20(Q
2). The data were compiled by the Jefferson Lab

Hall C T20 collaboration [67] from [62, 68, 69, 70, 71, 72, 73, 74, 75]. The curves are
theoretical predictions based on the Bonn OBEPQ-B potential [64] with non relativistic
nucleon current (solid), relativistic nucleon current(dashed), relativistic nuclear currents and
π-meson exchange currents (dotted), relativistic nuclear current and π, ρ and heavy meson
exchange currents (dot-dashed).
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2.3.4 Extraction of the Elastic Form Factor of the Neutron from

the Elastic Form Factors of the Deuteron

In the non-relativistic limit and in the absence of exchange currents, the electromagnetic

form factors of the deuteron can be expressed in terms of the isoscalar nucleon form factors

Gs
i defined as

Gs
E =

1

2
(Gp

E + Gn
E)

Gs
M =

1

2
(Gp

M + Gn
M),

(2.58)

weighted by the so-called body form factors, Di [76, 49].

GC(Q2) = Gs
E(Q2)DC(Q2)

GM(Q2) =
md

2mp

{

Gs
M(Q2)DM(Q2) + Gs

E(Q2)DE(Q2)
}

GQ(Q2) = Gs
E(Q2)DQ(Q2),

(2.59)

where the body form factors are the Fourier transforms of the S− and D-wave function

densities, defined as

DC(Q2) =
∫ ∞

0
(u2(r) + w2(r))j0(Qr)dr

DM(Q2) =
∫ ∞

0

[

(2u2(r) − w2(r))j0(Qr) + (
√

2u(r)w(r) + w2(r))j2(Qr)
]

dr

DE(Q2) =
3

2

∫ ∞

0
[j0(Qr) + j2(Qr)] w2(r)dr

DQ(Q2) =
∫ ∞

0
w(r)(u(r) − w(r)√

8
)j2(Qr)dr.

(2.60)

In the static limit, as Q2 → 0, the body form factors are determined by the static

properties of the deuteron in eqns. 2.48, 2.49 and 2.50,

GC(0) = 1

GM(0) =
md

mp
µd

GQ(0) = m2
dQd.

(2.61)

Figure 2-10 shows contributions from GC , GM and GQ to the A(Q2) observable, calculated

by Arenhövel using the Bonn potential. At low momentum transfer the contribution from
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Figure 2-10: Contribution to the observable A(Q2) (solid line) from GC (dashed), GM (dot-
ted) and GQ (dot-dashed) using the Bonn OBEPQ-B Total potential [50].

the charge form factor, GC dominates by several orders of magnitude the contributions from

GM and GQ. Thus, by measuring A(Q2) one can infer the value for the isoscalar nucleon

form factor, Gs
E. By using the fact that Gp

E is a well known quantity in this Q2 region, it is

possible to deduce the value of the neutron elastic form factor, Gn
E. Since this measurement

involves a calculation of the body form factors, the extraction of Gn
E from A(Q2) depends

heavily on the choice of a nucleon-nucleon potential. Also, relativistic corrections and meson

exchange currents have to be handled correctly in this calculation.

The first such analysis was done by Galster et al [59]. Using the best available potential

in 1971, Galster and collaborators extracted the best fit to their parametrization of choice

for Gn
E (known as the Galster parametrization). The resulting Galster form is

GGalster,n
E = − µnτ

1 + bτ
GD, (2.62)

where µn is the magnetic moment of the neutron, b is an arbitrary fit parameter and GD is the

dipole form factor. The best fit was obtained for b = 5.6 using the Feshbach-Lomon potential.
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It is worth noting that the Galster formulation of the neutron electric form factor is

purely phenomenological and has no physical meaning. However, it seems to fit the data

rather well. It predicts behavior at low Q2 corresponding to the neutron’s mean charge

radius squared of

< r2
n >ch

Galster= −6
dGn

E

dQ2
|Q2=0 =

3µn

2M2
n

= −0.125fm2.

This value coincides with the value of the Foldy term, < r2
Foldy,n >= −0.126 fm2. However,

it seems to be in contradiction to the best experimental value of the neutron radius. Table

I in reference [77] summarizes the best known experimental data for the charge radius of

the neutron, determined from scattering of thermal neutrons by atomic electrons. Although,

some discrepancy remains between these data, the best experimental value of the charge

radius is [77]

< r2
n >ch

exp= −0.115 ± 0.003 ± 0.004.

This type of an analysis was extended by Platchkov and collaborators [58] in 1990. By

using more modern potentials and introducing a second multiplicative fitting parameter, a

to the Galster formula, they refitted the existing and newly measured A(Q2) data to the

Platchkov’s Gn
E parametrization, expressed as

GP latchkov,n
E = −a

µnτ

1 + bτ
GD, (2.63)

An introduction of a second fit parameter had produced a better fit. The result of

the fit varied greatly with the choice of a nucleon-nucleon potential, as can be seen from

fig. 2-11. The most commonly quoted values of a = 1.25 ± 0.13 and b = 18.3 ± 3.4 were

obtained with the Paris potential. However, this fit violates the low Q2 behavior governed

by the neutron charge radius measurements 13. The value of a = 0.98 is the closest to

the correct Q2 = 0 slope, extracted with the Reid Soft Core (RSC) potential. All of these

parameters carry a strong theoretical uncertainty due to the lack of a precise knowledge of

13A value of a = 0.90 is required for the Platchkov parametrization to correctly match the slope at Q2 = 0
predicted by the the neutron charge radius [77].
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Figure 2-11: Platchkov et al. best fit [58] results for Gn
E (circles) from the A(Q2) data

using Paris potential. The curves represent the values of Gn
E derived from A(Q2) data using

various potentials. The thin red line has the slope according to the neutron’s charge radius
as measured by the thermal neutron scattering [77].

the nucleon-nucleon potential.

Recently, Schiavilla and Sick used the world’s data on the elastic quadrupole form factor

of the deuteron to determine Gn
E [78] over a larger Q2 range. At large momentum transfer,

GC and GQ have equal strength, hence model dependence becomes even stronger. The

authors tried to avoid this problem by using only data on the electric quadrupole form factor.

However, the major difficulty with this analysis at large Q2 is the lack of high precision T20

data. Also, some model dependence remains, as noted by the authors.

Due to the theoretical difficulties, the measurements of the neutron’s electric form factor

from elastic electron-deuteron scattering have not produced results matching the precision

of other nucleon elastic form factors. Also, this measurement is limited to a small region of

momentum transfer. There is a possibility that better knowledge of the individual elastic

electromagnetic form factors of the deuteron can constrain Gn
E with less uncertainty. How-
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Figure 2-12: Gn
E extraction by Schiavilla and Sick (circles) along with the Galster parame-

trization (solid line).

ever, a far more effective and less model dependent method to measure Gn
E over a larger

momentum transfer range is by using polarized quasielastic scattering on deuterium.

2.4 Polarized Quasielastic Electron-Deuteron Scatter-

ing

Quasielastic scattering refers to the scattering of a lepton from a single nucleon inside of an

A ≥ 2 nuclear system, where either the lepton is detected alone (inclusive) or in coincidence

with a recoiling nucleon (exclusive). In the Born Approximation, the incoming lepton ex-

changes a single virtual photon with the nucleon inside of the nucleus. If the momentum

transfer is large enough the scattering can be described by the Plane Wave Impulse Ap-

proximation (PWIA) in which the knocked-out nucleon does not interact with the spectator

A − 1 recoil system which is not involved in reaction. However, the PWIA turns out to
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Figure 2-13: Schematic representation of the polarized quasielastic scattering.

be a crude approximation especially in the medium energy scattering regime. At the same

time the assumption of the PWIA is not required to work out a full quasielastic scattering

formalism. The formalism developed by Arenhövel et al. [79] for the electro-disintegration

of the deuteron is followed in this section. This treatment includes the initial motion of the

nucleon inside of the deuterium nucleus and the interactions between the recoil nucleons.

As in the case of the elastic scattering from a nucleon, the four-momentum of the virtual

photon is Qµ = (ω, ~q) = Kµ −K ′µ = (E − E ′, ~k − ~k′). However, it can no longer be assumed

that the nucleon is originally at rest. Hence, the three-momentum and the energy of the

recoil nucleon detected in coincidence with the scattered electron is defined as

~pf = ~q − ~pm

Ef = Md + ω − Em,
(2.64)

where, f corresponds to a neutron or proton detected in the final state, ~pm and Em are

the momentum and energy of the recoil system which is not measured14. The energy of the

undetected recoil system is

Em =
√

M2
r + p2

m + E∗, (2.65)

14These quantities are usually referred to as missing momentum and missing energy.
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where Mr is the mass of the recoil system and E∗ is its excitation energy. In the deuterium

two-body break up, where the undetected recoil nucleon is in the ground state, the excitation

energy is simply the binding energy of a target nucleus, E ∗ = Eb = 2.2 MeV and the missing

mass is simply the mass of the undetected nucleon, Mm = Mr.

The kinematic condition corresponding to the center of the quasielastic peak is charac-

terized by the relation

ω =
Q2

2Mi
(2.66)

At the top of the quasielastic peak the undetected recoil nucleon is at rest before and after

the quasielastic knock-out. However, it would be a mistake to think that the top of the

quasielastic peak corresponds to the PWIA reaction, since the effects of the initial and final

state interactions are present in all kinematic regimes.

In the electro-disintegration reaction the virtual photon can be absorbed by either the

proton or the neutron. A more natural way to describe the kinematics of either nucleon

being knocked out is consider the opening angle of a cone created by ~pf around ~q. In the

lab frame, this angle is defined as

cos θpq =
q2 + p2

f − p2
m

2qpf
, (2.67)

where θpq can be Lorentz boosted into the final state center-of-mass frame where the cross

section is evaluated [79]. In the center-of-mass frame the sum of all hadronic momenta is

zero, ~pp + ~pn = 0. Please see Appendix A for the discussion of rotations and boosts from the

lab (BLAST) frame into a q-cms inertial reference frame. The convenience of this kinematic

quantity is that it describes simultaneously the quasielastic scattering on the proton and

the neutron. That is, θcms
pq = 0◦ kinematics corresponds to the quasielastic knock-out of the

proton and θcms
pq = 180◦ corresponds to the quasielastic neutron knock-out.

The final hadronic state is characterized by the kinetic energy of the final state system,

Enp, defined as

Enp = W − Mn − Mp, (2.68)
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where W is the invariant mass defined in the lab system as

W =
√

(ω + Md)2 − ~q2. (2.69)

2.4.1 Differential Cross Section For Polarized Electro-Disintegration

of the Deuteron

The derivation of the exclusive differential cross section for the electro-disintegration of

the deuteron reaction follows all of the same steps outlined earlier for polarized elastic e-p

scattering. However, since the final hadronic state consists of two nucleons, the phase space in

which the cross section is defined is larger. The exclusive differential cross section is defined in

the five-dimensional phase space (ω, Ωe, and Ωcms
pq ), due to the detected nucleon which is not

integrated over in the final state. The additional nucleon vector in the final state introduces

another kinematic plane, denoted as the Reaction Plane in fig. 2-13. The hadronic tensor is

now expressed in terms of 41 structure functions representing 35 helicity amplitudes. It was

shown [80] that these 35 helicity amplitudes represent the complete set of all polarization

observables in the exclusive electro-disintegration of deuterium. The structure functions

f (′)IM
µµ (µ ∈ {L, T}) contain the complete information about the dynamical structure of the

transition from the deuteron to the final n-p system.

Similarly to the case of polarized elastic electron-nucleon scattering, the differential cross

section is written in terms of the target polarization vector. The direction of the target

polarization vector is rotated into the reaction plane introduced in eqn. 2.25 by

~P d
IM = P d

I eiMφ∗

ddI
M0(θ

∗
d), (2.70)

where θ∗d and φ∗
d are the target polarization angles with respect to the scattering plane, where

ẑ is in the direction of ~q. The dI
M0 are the rotation matrices defined in eqn. 2.80. P d

I is the

deuterium target polarization tensor, written as

P d
I = δI,0 +

√

3

2
PzδI,1 +

√

1

2
PzzδI,2, (2.71)

where I = ±1, 2 and Pz, Pzz are the vector and tensor polarizations respectively.
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The differential cross section naturally breaks up into the components of the target po-

larization tensor in eqn. 2.71. The full differential cross section can be expressed as [79]

d5σ

dωdΩlab
e dΩcms

pq

= S(h, Pz, Pzz) =

S(0, 0, 0)







1 +

√

3

2
PzA

V
d +

√

1

2
PzzA

T
d + h



Ae +

√

3

2
PzA

V
ed +

√

1

2
PzzA

T
ed











,

(2.72)

where the unpolarized cross section S(0, 0, 0) and the asymmetries, Aj
i can be obtained in

terms of the structure functions, f (′)IM
µµ

S(0, 0, 0) = c
{

ρLfL + ρT fT + ρLT fLT cosφcms
pq + ρTT fTT cos2φcms

pq

}

(2.73)

Ae =
c

S0
ρ′

LT f ′
LT sinφcms

pq (2.74)

AV
d =

c

S0

1
∑

M=0

[(ρLf 1M
L + ρT f 1M

T + ρLT f 1M+
LT cosφcms

pq + ρTT f 1M+
TT cos2φcms

pq )sinMφ̃

+(ρLT f 1M−
LT sinφcms

pq + ρTT f 1M−
TT sin2φcms

pq )cosMφ̃]d1
M0(θ

∗
d) (2.75)

AT
d =

c

S0

2
∑

M=0

[(ρLf 2M
L + ρT f 2M

T + ρLT f 2M+
LT cosφcms

pq + ρTT f 2M+
TT cos2φcms

pq )cosMφ̃

−(ρLT f 2M−
LT sinφcms

pq + ρTT f 2M−
TT sin2φcms

pq )sinMφ̃]d2
M0(θ

∗
d) (2.76)

AV
ed =

c

S0

1
∑

M=0

[(ρ′
T f

′1M
T + ρ′

LT f
′1M−
LT cosφcms

pq )cosMφ̃

−ρ′
LT f

′1M+
LT sinφcms

pq sinMφ̃]d1
M0(θ

∗
d) (2.77)

AT
ed =

c

S0

2
∑

M=0

[(ρ′
T f

′2M
T + ρ′

LT f
′2M−
LT cosφcms

pq )sinMφ̃

+ρ′
LT f

′2M+
LT sinφcms

pq cosMφ̃]d2
M0(θ

∗
d) (2.78)

c =
αE ′

6π2EQ4
, (2.79)

where S0 = S(0, 0, 0), φcms
pq is the angle between the scattering and reaction planes. The

angle φ̃ is defined as φ̃ = φcms
pq −φ∗

d (see fig 2-13). The virtual photon density matrices ρ(′)IM
µµ

are introduced earlier in eqn. 2.2815.

15Here, the Lorentz boost is done into the center-of-mass frame, not the Breit frame. The Lorentz boost

constant, β, is expressed as β = |~qlab|
|~qcms| .
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The elements of the rotation matrix, dI
M0 are defined as

d1
00(θ

∗
d) = cosθ∗d , d2

00(θ
∗
d) =

1

2
(3cos2θ∗d) − 1

d1
10(θ

∗
d) = −

√

1

2
sinθ∗d , d2

10(θ
∗
d) = −

√

3

2
cosθ∗dsinθ∗d

d2
20(θ

∗
d) =

√
6

4
sin2θ∗d

(2.80)

In the Plain Wave Born Approximation (PWBA)16, the asymmetries AV
d and AT

ed are

expected to equal zero, since these polarization observables are T-odd imaginary combina-

tions of the deuteron electromagnetic current. However, with the addition of the final state

interactions these quantities can acquire small, non-zero values. Ae is expected to be small,

especially because in this experiment, all observables are integrated over all out-of-plane

angles, thus 〈sinφcms
pq 〉 = 0.

The two significant polarization observables are AV
ed and AT

d . The tensor polarization

observable, AT
d is sensitive to the D-wave component of the deuteron wave function. It is

expected to be small at low missing momentum17, where the S-wave dominates the total

wave function. AT
d becomes larger as the missing momentum increases.

The vector asymmetry, AV
ed is sensitive to both S− and D-waves of the deuteron. At low

missing momentum the proton and neutron are both in the S-state. In this state the spins

of both nucleons point in the direction of the deuteron spin. Hence, both the proton and

neutron in the deuterium target are polarized in the same direction as the target. However, as

the missing momentum increases, the D-wave starts to contribute to the total wave function

2-6. In the D-state the spins of the nucleons must be anti-parallel to the spin of the deuteron

in order to conserve total angular momentum. Thus, the direction of the nucleon polarization

becomes opposite to the nuclear polarization. Correspondingly, the average projection of the

nucleon spin along the quantization axis defined by the polarization vector of the target is

expressed as

P N
z (pm) =

ρS(pm) − ρD(pm)

ρS(pm) + ρD(pm)
. (2.81)

A graph of P N
z (pm) using the Bonn potential is plotted in fig. 2-14. It is safe to assume

16PWBA is defined as the PWIA in one photon exchange approximation.
17Missing momentum in this context is equivalent to the momentum of the nucleons due to the Fermi

motion inside of the nucleus.
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Figure 2-14: Average projection of the nucleon spin vector with respect to the deuterium tar-
get polarization vector. P N

z (pm) is calculated using the Bonn probability density functions,
ρS(p) and ρD(p) (see fig. 2-6).

that the spin vector of the nucleon inside of deuteron is in the direction of the deuterium

target polarization vector up to a missing momentum of 0.2 (GeV/c).

2.4.2 Extraction of Gn
E from the 2 ~H(~e, e′n)p Reaction

The influence of the neutron electric form factor on the polarized observables in the deu-

terium break-up reaction was originally investigated by Arenhövel, Leidemann and Tomusiak

[38]. They found that the beam-target vector asymmetry in the perpendicular kinematics,

AV
ed(θ

∗
d = π

2
, φ∗

d = 0) was most sensitive to Gn
E. In the PWBA, electron scattering on the

deuterium target can be approximated as an electron scattering on a single nucleon inside

of the deuteron, where the nucleons do not interact with each other in the final state. The

quasielastic proton knockout approximation corresponds to a center-of-mass angle, θcms
pq of

zero degrees. In the quasi-free neutron knockout approximation, θcms
pq = 180◦. In this ap-
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proximation AV
ed(

π
2
, 0) becomes simply

AV
ed(

π

2
, 0) = − 2

√
2τρ′

LT Gn
EGn

M

ρL(Gn
E)2 + 2τρT (Gn

M)2

AV
ed(

π

2
, 0) = − 2

√
2τρ′

LT Gp
EGp

M

ρL(Gp
E)2 + 2τρT (Gp

M)2



























for θpq = 180◦

for θpq = 0◦

(2.82)

This formula is identical to the perpendicular beam-target vector asymmetry from the elastic

electron-proton scattering on a polarized hydrogen target, A⊥
eN in eqn. 2.41 . Figure 2-15

shows a comparison between A⊥
e,p and AV

ed(
π
2
, 0) at θcms

pq = 0◦ in the PWBA approximation.

This comparison shows that in the approximation described above, the observable AV
ed(

π
2
, 0)
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Figure 2-15: Comparison of theoretical A⊥
e,p from 1 ~H(~e, e′p) (line) and AV

ed(
π
2
, 0) from

2 ~H(~e, e′p)n (points). The asymmetry from the ~D(~e, e′p)n reaction is taken at θcms
pq = 0◦

corresponding to a purely quasielastic scattering. The hydrogen asymmetry is calculated
using Höhler [18] form factors and the deuterium asymmetry is calculated by Arenhövel et
al. [79] using Bonn potential and PWBA formalism.

in the polarized electro-disintegration of deuterium where the proton is detected indeed

follows the form predicted by the electromagnetic form factors of the proton. Analogously,

the neutron asymmetry should follow the form factors of the neutron. This fact can be used

in order to extract Gn
E/Gn

M .

Figure 2-16 shows the sensitivity to Gn
E at three out of five Q2 kinematic points considered

in this work. The sensitivity increases near the quasielastic peak at θcms
pq = 180◦. Away from

the quasielastic kinematics the sensitivity rapidly gets smaller and completely disappears.
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Figure 2-16: The spin-correlation parameter AV
ed(

π
2
, 0) as a function of θcms

pq for Q2 = 0.14
(top left), 0.2 (top right) and 0.29 (GeV/c)2 (bottom ). The angle of the target polarization
is fixed at 32◦, while the three-momentum transfer angle is changing with Q2. Hence, angle,
θ∗d, is not precisely set to π

2
, but varies by small amount δ = 10◦, 2◦ and −3◦ in each Q2 bin,

respectively. The calculations ware performed by Arenhövel using the Bonn potential. The
Final state interactions (FSI), Meson Exchange Currents (MEC) and Isobar-Currents (IC)
are included in the calculations.
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Equation 2.82 indicates that in the PWBA the AV
ed(

π
2
, 0) would vanish when Gn

E is zero.

However, this is not true when the final and initial state interactions are considered. Also,

as Q2 varies across the BLAST acceptance the perpendicular kinematics condition is slightly

violated and θ∗d is no longer at exactly 90◦. In this case the parallel asymmetry term,

proportional to (Gn
M)2, starts to contribute. Since the value of Gn

E is an order of magnitude

smaller than that of Gn
M , any contribution from the parallel asymmetry is significant.

The quasielastic scattering on the neutron, even at the top of the quasielastic peak, where

θcms
pq = 180◦, is very sensitive to the reaction mechanism corrections. The largest correction is

from the Final State Interactions (FSI). Other corrections include Meson Exchange Currents

(MEC), Isobar-Currents (IC) and Relativistic Corrections (RC).

Figure 2-17 represents the reaction model dependence of AV
ed(

π
2
, 0). At the lowest mo-

mentum transfer, Q2 = 0.14 (GeV/c)2, the PWBA prediction deviates from the full model

by almost 50% at θcms
pq = 180◦. It is clear that the FSI play an important role in the asym-

metry observables. At the same time, the MEC, IC and RC are small at this kinematic

point. At Q2 = 0.2 (GeV/c)2 the FSI become less of a factor at θcms
pq = 180◦. However, FSI

becomes more important as θcms
pq moves away from 180◦. At these kinematics inclusion of the

MEC, IC and RC starts to significantly change the calculated asymmetry from the results

for quasielastic kinematics. This trend continues at the Q2 = 0.29 (GeV/c)2 kinematics.

Here the PWBA and PWBA+FSI curves converge at the quasielastic peak. Away from the

quasielastic peak, the MEC and IC modify values of the calculated asymmetry. The same

follows for higher Q2 kinematic points.

Since the quasielastic cross section peaks strongly at θcms
pq = 180◦18, the effects of the

reaction mechanisms (MEC, IC and RC) on the vector polarization observable are small

compared with sensitivity of the asymmetry to the size of Gn
E. However, the Gn

E measure-

ments have to rely heavily on Arenhövel’s description of the Final State Interactions.

At the same time the spin-correlation parameter AV
ed(

π
2
, 0) is not sensitive to the choice

of the nucleon-nucleon models, i.e. Bonn, Paris, V18 and V14 potentials (see fig. 2-18).

Thus, the dependence on the choice of the potential which severely limited the precision of

the Platchkov analysis, plays no role in the quasielastic scattering analysis.

18In fact the cross section peaks at ∼ 175◦ since the cross section is multiplied by the Jacobian which goes
as sinθcms

pq . However, the Jacobian does alter the sensitivity to the reaction mechanism or Gn
E .
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Figure 2-17: Effect of a reaction mechanism on the spin-correlation parameter AV
ed(

π
2
, 0)

for Q2 = 0.14 (top left), 0.2 (top right) and 0.29 (GeV/c)2 (bottom ). Calculations were
performed by Arenhövel for the BLAST kinematics using Bonn potential and Gn

E equals
Galster. The solid circle represents the asymmetry from an electron-neutron elastic scattering
with Galster-like neutron form factors. Model “N” is the PWBA+FSI.
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Figure 2-18: Effect of a N-N potential model on the spin-correlation parameter AV
ed(

π
2
, 0) for

Q2 = 0.20 (GeV/c)2 Calculations were performed by Arenhövel for the BLAST kinematics
using “Total” reaction mechanism and Gn

E equals Galster.

At θcms
pq = 0, AV

ed shows little model or reaction mechanism dependence. This means that

the quasielastic knock-out reaction on the proton inside of a deuteron is well described in

of terms of the electron-proton elastic scattering cross section. This allows the use of the

2 ~H(~e, ep)n reaction channel to measure a product of the beam and target vector polarizations,

hPz, with a high precision and little model uncertainty.

2.5 Theoretical Models of the Elastic Form Factors of

the Nucleon

Ideally the internal electromagnetic structure of the nucleon should be calculated from the

theory of the strong interactions, Quantum Chromo-Dynamics (QCD). So far, however, QCD

has not been solved exactly. A large number of QCD inspired effective models were developed
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over the past 30 years to describe the nucleon’s form factors at low Q2. However, ab initio

QCD calculations at low momentum transfer remain elusive. The overview of the theoretical

models in this section uses a compilation of the latest model predictions in a review article by

Gao [81]. The numerical values of the theoretical curves were compiled by Bradley Plaster

[82].

2.5.1 Scaling and pQCD

Much work has been done to understand the electromagnetic form factors of the proton using

the so-called perturbative QCD frame work. Perturbative QCD (pQCD) is the perturbation

theory where the expansion is performed in terms of the strong coupling constant, αs. The

parameter αs(Q
2) is a “running constant” that becomes small at a large momentum transfer.

In this framework, Brodsky and Farrar [83] developed the following scaling law governing

the behavior of the Dirac and Pauli form factors,

F1 ∝
1

Q4
and F2 ∼

F1

Q2
. (2.83)

Using this scaling law the Sachs form factors have the same asymptotic behavior,

GE,M ∼ 1/Q4. The scaling predicts a constant Sachs form factor ratio, Gp
E/Gp

M at large Q2.

Although the derivation of eqn. 2.83 was done using dimensional analysis, it was veri-

fied by a calculation using pQCD done by Brodsky and Lepage [84]. In their 1980 article

they considered a proton in an infinite-momentum frame struck by a highly virtual photon

with a large transverse momentum. The form factor is the probability of the proton to

absorb a large transverse momentum while not breaking up. This probability is a product

of three probability amplitudes: a) probability of finding a three-quark state in the proton,

b) amplitude to produce a three-quark state with a collinear momenta and c) probability

for the three-quark state to remain as a proton. In this framework the authors calculated

the asymptotic behavior of the Sachs form factors of the proton.

Gm(Q2) → 32π2

9
C

α2
s(Q

2)

Q4

(

ln
Q2

Λ2

)−4/3β

(e|| − e−||), (2.84)

where αs and Λ are the strong coupling constants, and the exponent β = 11 − 2
3
nflavor ,
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where nflavor = 3 is the number of quark flavors in QCD. e|| and e−|| are the average charges

of quarks with helicity parallel and anti-parallel to the spin of a nucleon, respectively. The

average charges of the quarks inside the proton and neutron are

ep
|| = 1, ep

−|| = 0, en
|| = en

−|| = −1

3
(2.85)

Eqns. 2.84 and 2.85 predict at large Q2 that Gn
M/Gp

M = −2/3, assuming isospin-spin sym-

metry. The authors noted that this result is remarkably close to the value of µn/(1 + µp) =

−0.685.

2.5.2 Lattice QCD

As mentioned before, the exact solution to the strong interaction theory is unattainable at

this time. However, recently lattice QCD calculations present the possibility of determining

observable properties of the nucleon from the full QCD Lagrangian [85]. Currently all lattice

QCD calculations are done in the “heavy pion” regime. Initial efforts have been made to

explore the chiral regime by extrapolating results from the “heavy pion” regime. However,

the uncertainty in this extrapolation is rather large. Dunne et al. [86] were able to calculate

the proton charge radius at the physical pion mass based on the lattice calculation in the

“heavy pion” region, by expanding the charge radius around the chiral limit (mπ → 0).

〈rE〉 = c1 ± χN log
mπ

µ
+ c2m

2
π, (2.86)

where µ is the mass scale and χN = −(1+5g2
A)/(4πfπ)

2, where gA is the axial form factor and

fπ is the pion decay constant. Ashley et al. [87] used the fact that in a dipole parametrization

the mean square radius of a nucleon is defined in terms of the dipole fit parameter, Λ as

〈r2〉 = 12/Λ2. (2.87)

The authors used the present QCDSF lattice calculations [88] to fit for the dipole parameters,

Λ for all nucleon form factors with a certain degree of success.
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2.5.3 Dispersion Theory

Effective field theories of the strong interaction have been more successful, to date, in de-

scribing nucleon electromagnetic structure at medium and low momentum transfers. The

first such effective field theory to be discussed in this chapter is the Dispersion Theory.

In the Dispersion Theory the isoscalar and isovector nucleon form factors can be written

in a spectral representation as

Fi,s(Q
2) =

1

π

∫ ∞

9mπ

ImFi,s(µ
2)

µ2 + Q2
dµ2

Fi,v(Q
2) =

1

π

∫ ∞

4mπ

ImFi,v(µ
2)

µ2 + Q2
dµ2, (2.88)

where i = 1, 2 refer to the Dirac and Pauli form factors respectively. Meissner and collabora-

tors have fitted the dispersion relation to the existing scattering data [89, 90] by choosing the

residues of the vector meson pole so that the leading term would cancel in a 1/Q2 expansion,

thus preserving proper scaling in the pQCD regime. The minimum number of poles needed

to fit the data was three isoscalar and three isovector poles. Of these two isovectors and

three isoscalars could be identified with the physical vector meson masses.

2.5.4 Vector Meson Dominance

Vector Meson Dominance (VMD) is an approximation to the Dispersion Theory, when the

eqn. 2.88 is parametrized as a sum over all possible vector mesons. In the VMD model a

virtual photon couples to a nucleon through the vector mesons. A linear combination of the

Dirac and Pauli form factors of the proton and neutron make up the isoscalar and isovector

form factors

Fi,s(Q
2) =

1

2
(Fi,p + Fi,n) and Fi,v(Q

2) =
1

2
(Fi,p − Fi,n), (2.89)
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where i = 1, 2 represents Dirac and Pauli form factors. These form factors are generally

expressed as a sum over all mesonic contributions

F v,s
i (Q2) =

∑

i=mesons

miai

Q2 + m2
i

Fi(Q
2) (2.90)

where ai is the photon-meson coupling constant, mi is the mass of a vector meson and Fi is

the meson-nucleon coupling form factor. A sum over all vector mesons is done so that the

exchanges of mesons with I = 0 belong to the isoscalar form factors and exchanges of I = 1

belong to isovector from factors. Eqn. 2.90 does not take into account the individual vector

meson’s mass distribution widths.

The Vector Meson Dominance model expressed in eqn. 2.90 violates the high Q2 behavior

derived from the pQCD in eqn. 2.84, since F2 scales as 1/Q2 and not as 1/Q6 predicted by

Brodsky, et al. Gari and Krümpelmann have worked out a “synthesis” of the VMD and the

quark dynamics in the asymptotic pQCD limit [91, 92]. In this theory, ω-mesons were used

for I = 0 vector mesons and ρ-mesons were used to represent I = 1 vector mesons. Gari and

Krümpelmann introduced a product of low Q2 VMD-like behavior, F1 ∼ F2 ∼ Λ2
1

Q2+Λ2
1

and

high Q2 behavior from eqn. 2.83 as

F1 =
Λ2

1

Q̂2 + Λ2
1

× Λ2
2

Q̂2 + Λ2
2

F2 =
Λ2

1

Q̂2 + Λ2
1

×
[

Λ2
2

Q̂2 + Λ2
2

]2

,

(2.91)

where

Q̂2 = Q2
log

(

Q2+Λ2
2

Λ2
QCD

)

log
(

Λ2
2

Λ2
QCD

) .

Here, if Λ2
2 � Λ2

1, then both the low and high momentum transfer behavior is conserved.

If Q2 � Λ2
2, then the form factors are dominated by the meson dynamics and have a

Λ2
1/(Q2 + Λ2

1) form. If Q2 � Λ2
1, then the form factors are dominated by quark dynamics

and have the proper Q2 scaling. Connecting low and high Q2 introduces two additional
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fitting parameters, making a total of seven19. By fitting to all existing form factor data Gari

and Krümpelmann obtained a χ2/Ndf of less than unity.

2.5.5 Chiral Quark Soliton Model

The Chiral Quark Soliton Model arises from consideration of the role of spontaneous chiral

symmetry breaking in the dynamics of the bound state of a nucleon and the 1/Nc expansion,

where Nc is number of colors [93]. When chiral symmetry is spontaneously broken, the

light20 Goldstone bosons are expected to be present in the theory. In the Chiral Quark

Soliton Model these bosons are in the form of pions, the lightest of all hadrons. The pion

field can be written in terms of the (N 2
f − 1) × (N2

f − 1) unitary matrix

U(x) = exp

(

i
τAπA

Fπ

)

, (2.92)

where τA are the three SU(2) Pauli matrices (in case of Nf = 2), Fπ = 93 MeV is the pion

decay constant. The simplest chiral Lagrangian was suggested by Skyrme [94] as

Lπ
skyrme =

F 2
π

4

{

TrLµLµ + M2
πTr(U + U †)

}

+
1

32e2
Tr [LµLµ]2 (2.93)

where Lµ = U †∂µU is the gradient of a pion field, e = 4.25 is the standard Skyrme parameter

and Mπ = 138 MeV is the mass of a pion. Holzwarth [95] extended the pionic Lagrangian

in eqn. 2.93 to include ρ and ω vector meson fields explicitly as the dynamical degrees of

freedom21, so that the total skyrmion Lagrangian is the sum of the three meson Lagrangians,

Lskyrme = Lπ
skyrme + Lρ

skyrme + Lω
skyrme (2.94)

Holzwarth used this Lagrangian to obtained the results for the nucleon form factors.

19Masses in this theory are fixed.
20These bosons are massless in the pure Goldstone theory.
21Model B in reference [95]

59



2.5.6 Relativistic Constituent Quark Model

In the constituent quark model, the electromagnetic structure of a nucleon is understood

purely in terms of the electromagnetic properties of constituent quarks. In a non-relativistic

three constituent quark model the nucleon is an antisymmetric wave function of three spin- 1
2

point quarks. The proton consists of two up quarks with the charge of + 2
3

and one down

quark with the charge of − 1
3
, while the neutron consists of one up and two down quarks.

The mass of a constituent quark in the non-relativistic model is ∼1/3 of a nucleon mass. Up

and down quarks in the proton and neutron are related by the isospin symmetry,

up = dn

dp = un.
(2.95)

This isospin symmetry is used in many model calculations.

The electromagnetic current of the nucleon, Jµ can be approximately expressed as a sum

of “one-body” quark currents,

Jµ ≈ Jµ
1 =

N
∑

j=1

(

f j
1 (Q2)γµ + f j

2 (Q2)
iσµνqν

2mj

)

, (2.96)

where f j
1 (Q2) and f j

2 (Q2) are the Dirac and Pauli form factors of the jth quark respectively

and mj is the mass of that quark22. To evaluate the form factor from the one body current

the constituent quark wave function has to be constructed from a realistic quark potential.

Cardarelli and Simula [96, 97] have calculated the nucleon elastic form factors using

a One-Gluon-Exchange (OGE) potential. The authors assumed valence quark dominance.

The constituent quarks are then allowed to have structure, with the form factors of a given

functional form. The constituent quark wave function is calculated by solving the three body

Hamiltonian.

Wagenbrunn, Boffi et al. [98, 99] used the Goldstone-Boson-Exchange (GBE) potential

with a single particle current operator for point-like constituent quarks. This formalism is

called Point Form Spectator Approximation (PFSA), where a single quark is struck by a

22Remember that if the quarks are structureless point particles then Dirac and Pauli form factors become
identically f

j
1

= 1 and f
j
2

= 0.
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photon, coherently or incoherently. The authors were able to achieve a good agreement with

Gn
E at low Q2. They postulate that Gn

E is driven by the small hyperfine components of

the Hamiltonian and Lorentz boosts. The hyperfine components explicitly break the SU(6)

symmetry in the quark interaction Hamiltonian23.

2.5.7 Cloudy Bag Model

In the cloudy bag model the three constituent quarks are surrounded by a cloud of pions.

Here a distinction is made between the bare nucleon, consisting of constituent quarks and

the physical nucleon observed in the elastic scattering. In this model an incident photon can

*γ

N N

*γ

N NN N

πk

*γ

N N
N

πk

a) b) c)

Figure 2-19: Diagram of a virtual photon interacting with a bare nucleon (a), nucleon in the
presence of a pion (b) and a pion from cloud (c).

interact electromagnetically with the bare nucleon (fig. 2-19a), the nucleon in the presence

of a pion (fig. 2-19b) or with a charged pion from the cloud (fig. 2-19c). The effect of the

pion cloud is especially pronounced in the neutron electric form factor, Gn
E, due to the small

contribution to the electromagnetic structure of the neutron from the constituent quarks.

Recently Miller [100] calculated the effect of the pion cloud in a relativistic framework

to account for the latest data at large Q2. The calculation was done in the Light Front

formalism, similar to the approach of Cardarelli and Simula. The total nucleon form factor

is expressed as a sum of three possible photon interaction form factors,

F α
i (Q2) = Z

[

F α,0
i (Q2) + F α,1

i (Q2) + F α,2
i (Q2)

]

, (2.97)

where i = 1, 2 and α = p, n. F α,0
i (Q2) is the bare nucleon form factor, F α,1

i (Q2) is the form

23This was also noted by Cardarelli and Simula [96].
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factor of the nucleon in a presence of a pion and F α,2
i (Q2) is the photon-pion vertex form

factor. The factor of Z is needed for a proper physical nucleon form factor normalization at

Q2 = 0.

2.5.8 Phenomenological Models

Kaskulov and Grabmayr [101, 102] used the pion cloud around a bare nucleon model to obtain

the theoretical justification for the success of the Galster parametrization [59]. They showed

that the pion cloud content of a nucleon under a set of approximations leads to the Galster-

like Q2 dependence. Based on their work they propose a modified Galster parametrization,

Gn
E(Q2) = a′ bτ

1 + bτ
GD(Q2), (2.98)

where b = 4M 2
π/Λ2

π, Λ2
π = 0.53 GeV2, a′ is the value related to the pion-cloud content and

GD is the dipole form factor of a bare three quark core. By using this parametrization the

authors were able, with a large degree of success, to unite data from pion electroproduction

with the Gn
E measurements. A best χ2 fit of the parametrization in eqn. 2.98 was found

with b = 6.65 and a′ = 0.26 being fixed by the pion data and Λ as the only free parameter.

Friedrich and Walcher [103] have phenomenologically parametrized the Gn
E. Their para-

metrization was inspired by the non-relativistic constituent quark model surrounded by a

pion cloud. The contribution to the total nucleon from factor from each constituent quark,

GqN was parametrized with a dipole. The contribution from the pion cloud, Gπ was para-

metrized with a Gaussian form.

GqN =
aqN

0

(1 + Q2/aqN
1 )2

Gπ = aπ
0 (1 − 1

6
Q2/aπ

1 )e
−( Q

2aπ
1

)2

,

(2.99)

where aqN
0 and aπ

0 are given by quark and pion charges, respectively.
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2.5.9 Diquark Model

In the quark spectator-diquark model a virtual photon incoherently strikes the constituent

quark in the nucleon, with the remaining constituents treated as the quasi-particle spectators

to supplement other quantum numbers of the nucleon. Ma and collaborators [104] have

calculated the nucleon elastic form factors in the Light Front formalism. They took the mass

of a quark to be mq = 0.22 GeV which is much less than the mass of a quark in the non-

relativistic model (1/3 of a nucleon mass). The authors explained the lower constituent quark

mass as the effect of relativity. The correct prediction of the neutron mean square charge

radius was achieved by breaking SU(6) symmetry24. SU(6) was broken by the difference in

the scalar and vector diquark parameters along with the Melosh rotation in the Light Front

formalism.

2.5.10 Summary

The recently measured data on Gn
E at Q2 near or above 1 (GeV/c)2 [105, 106, 107] have

favored models based on constituent quarks surrounded by a pion cloud. In particular

Cardarelli and Simula calculations at large Q2 seem to successfully predict a ratio of electric

to magnetic form factors, µGn
E/Gn

M in fig. 2-20, while they incorrectly predict a low Q2

behavior of Gn
E. They also predict an incorrect neutron charge radius. However, calculations

by Miller show that the addition of a pion cloud around a bare nucleon generated by the

constituent quarks can preserve the correct shape at large Q2 while being more accurate in

predicting the small Q2 behavior.

The Gn
E data appear to show an enhancement at low momentum transfer, Q2 ∼ 0.25

(GeV/c)2. In fact, the calculations based on the Chiral Soliton model, while misrepresent-

ing the shape at large Q2, seem to indicate an enhancement at small Q2. Friedrich and

Walcher have focused on this idea and used a phenomenological form to parametrize this

enhancement as a long distance diffuse pion cloud. This contribution of the pion cloud ap-

pears to be connected to the deviation of the other three elastic form factors from the dipole

parametrization at low momentum transfer.

There is still a sizable theoretical uncertainty in the calculation of the neutron electric

24Already indicated by Wagenbrunn and Boffi [98, 99] and Cardarelli and Simula [96, 97].
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form factor at low Q2 partly due to lack of high quality Gn
E data. High precision data

in this momentum transfer region would be very useful in constraining theoretical model

predictions.

Precise knowledge of the neutron electric form factor will enhance the interpretation

of results from parity-violating scattering experiments designed to probe the strangeness

content of a nucleon. Recent parity-violation experiments [108] have indicated that the

elastic form factors of the nucleons, Gn
E in particular, are one of the biggest contributions

to the systematic uncertainty. The special interest of the parity-violating experiments is in

the region of extremely low Q2. This work should be of great value for such low momentum

transfer experiments.
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Figure 2-20: World’s data on µGn
E/Gn

M along with the theoretical calculations. The data
are from references [109, 110, 111, 112, 113, 114, 115, 105, 116, 117, 106, 107]. The thin
solid line marked as “GK” is a calculation by Lomon based on the extension of the Gari-
Krümpelmann VMD+pQCD theory (section 2.5.4). The thin dashed line is a Chiral Soliton
model calculation performed by Holzwath (section 2.5.5) The thin dot-dashed line marked
as “LF OGE” is a calculation by Carderelli and Simula, the thin dotted line marked as
“PFSA GBE” is a calculation by Wagenbrunn and Boffi. Both calculations are done with
the constituent quark model (section 2.5.6). The thick solid line marked as “CB OGE”
is a calculation by Miller performed in cloudy bag model using the One-Gluon-Exchange
potential in a core nucleon (section 2.5.7).The thick dotted line is a calculation by Ma and
collaborators using the Diquark model (section 2.5.9).
.
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non-relativistic constituent quark model.
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Chapter 3

Polarized Hydrogen/Deuterium Gas

Target

The success of an experiment in which the target polarization observables are measured is

largely dependent upon the performance of the polarized target. Two types of targets are

used in these kinds of experiments, solid and gaseous. Solid polarized targets, in the form

of ammonia (NH3) or the deuterated ammonia (ND3) are used with the extracted beams

[118] (e.g. CEBAF beam at Jefferson Laboratory). The advantage of a solid target is in

its high density which, in combination with a high-duty factor CW beam, provides high

luminosity. The maximum hydrogen atom polarization achieved with an ammonia target is

75 %. However, the polarization of deuterium atoms inside of the deuterated ammonia target

is rather low, ∼25 %. Ammonia targets are not pure hydrogen or deuterium targets. This

introduces backgrounds from scattering on other atomic species and the target’s aluminum

container.

A solid target cannot be used with a stored beam. Instead, a polarized gas produced

by the Atomic Beam Source (ABS) and stored in the storage cell internal to a beam line is

used as a target. The advantage of the polarized gas target is its high polarization, typically

85 %. Since the gas targets are pure, the scattering reaction is almost background free.

The advantages of a polarized atomic gas target make it an excellent choice for the BLAST

experiment.

The Atomic Beam Source used in BLAST was based on the source used in the AmPs
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Figure 3-1: Schematic representation of the ABS. Gas is injected into the dissociator (C1).
The Skimmer chamber is separated from the first sextupole vacuum chamber by the valve,
V11. The first sextupole chamber is followed by the MFT transition unit vacuum chamber.
The SFT and WFT transition units and the second sextupole system share the same vacuum
chamber. The target chamber is separated from the ABS by a valve, V14. A Breit-Rabi
polarimeter vacuum chamber is located underneath the target chamber and separated by a
valve V15. All valves are remotely controlled. All vacuum chambers are equipped with ion
gauges.
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Ring at the NIKHEF laboratory [71]. The NIKHEF ABS was delivered to Bates in August,

2000. However, before the ABS could be installed into the South Hall Ring major differences

between the AmPs and BLAST running conditions had to be addressed. These conditions

are summarized below.

• Space Consideration: The ABS has to fit between the top two coils of the BLAST

toroid (see fig. 4-4). The tight space requirements rendered some components of the

NIKHEF ABS design unusable.

• BLAST Field: The ABS has to operate in the strong magnetic field (up to 3 kGauss)

produced by the BLAST spectrometer magnet. Since all of the RF transitions in the

ABS rely on the precise setting of the magnetic field, special consideration has to be

given to shielding the magnetic components of the RF transition units from the BLAST

field. The turbo pumps have to be either taken out of the high field region or replaced

by pumps that can operate in a high magnetic field.

• Reliability: Due to limited access to the ABS during the experiment, the reliability

is an important characteristic. The improvements to the ABS’ reliability over the

NIKHEF design are achieved by completely automating the ABS controls using the

EPICS control system. Since the South Hall Ring control systems are all EPICS based

it became easy to integrate the ABS operation into that of the South Hall Ring. The

reliability of the RF transitions was improved by adding a magnetic feedback loop

mechanism to the controls of the RF transition units.

• Improved Figure-of-Merit: The BLAST scientific program demands high figure-

of-merit from the ABS target. Improvements over the NIKHEF design were made in

order to raise the polarization of atoms in the target.

• Multiple Modes of Operation: The new ABS design allows for rapid switching

between hydrogen and deuterium polarized targets, thus addressing one of the require-

ments of the BLAST experiment.

Figure 3-1 is a schematic representation of the ABS. Almost all of the components have

been modified to some extent in order to satisfy the requirements of the ABS operation at

BLAST.
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3.1 The RF Dissociator

Figure 3-2: Diagram of the RF dissociator. The 1H2 or 2H2 is injected into the gas tube.
The cooling water flows on the outside of the gas tube. The gas is dissociated by the RF
field in the coil. The nozzle is cooled by the cold head connected to the nozzle by a copper
braid.

An RF field with a fixed frequency of 27.12 MHz is used to dissociate the hydrogen

(deuterium) molecules into atoms in the RF dissociator. The molecular gas is injected

by the Polarized Gas Feed System (PGFS) into a 2 mm thick Pyrex glass tube with a 9

mm inner diameter. The PGFS is designed with the capability to switch quickly between

injecting hydrogen and deuterium gases (see fig. 3-3). The PGFS also injects a small amount

of oxygen gas into the gas tube to mix with hydrogen (deuterium) for reasons explained later.

1H2 and 2H2 gas flow rates are controlled by the MKS 1479A mass flow controller (MFC),

with a dynamic range of 0 to 200 standard cubic centimeters per minute (sccm). The MFC

with a dynamic range of 0 to 1 sccm is used for the O2 flow. The estimated accuracy of

these devices is ∼2-3%.
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Figure 3-3: Polarized Gas Feed System (PGFS). The PGFS has four gas lines allowing quick
switching between hydrogen (H2) and deuterium (D2) targets. N2 was not used during
the experiment. The gas flow rate is regulated by the Mass Flow Controllers (MFC). The
baratron (B) and convectron (C) gauges measure gas pressure in the PGFS lines. Valves
V10 and V9 direct the gas flow either into the dissociator or the pump.

The gas tube is surrounded by a larger 4 mm thick and 16 mm inner diameter glass

tube which is used to flow cooling water (CT). The deionized (DI) cooling water is used to

cool the plasma produced during the dissociation. It was found that the temperature of the

cooling water has a significant effect on the performance of the dissociator. The temperature

of the cooling water was kept constant at ∼10 ◦C.

The glass tube is surrounded by the RF coil (L), which provides a resonant electromag-

netic field needed to dissociate molecules into atoms. The RF coil is shielded by an aluminum

can to reduce the amount of the RF field “leaking” into other ABS and BLAST detector

components. A fixed frequency RF generator (ENI Genesis) is used to provide the RF field

with power up to 500 Watts. The generator is located 130 meters away from the dissociator

coil which results in ∼40% of RF power being dissipated in the semi-rigid RF cable. The

actual power out of the supply used during the experiment is ∼250 W.

Since the RF field has the fixed frequency of 27.12 MHz, adjustments to the dissociator’s

RF coil have to be made to maximize the Q-value of a resulting resonator at this particular

frequency . The Q-value was optimized by properly choosing a tap point on the RF coil and

71



adjusting the capacitor inside of the aluminum can . The capacitor consists of a piece of

dielectric placed between the bottom of the RF coil and the aluminum can which also serves

as a ground. The coil (L), capacitor (C) and plasma (R) effectively create an LRC circuit.

In the Q-value maximization procedure, an RF signal in the range of 20 to 30 MHz is

fed into the dissociator while the frequency response of the cavity is being measured by a

pick-up coil. The capacitor inside of the can is adjusted until the peak of the frequency

response is at 27.12 MHz. Then a small correction is made to account for the effect of the

DI cooling water in the outer tube. It was discovered that the DI cooling water lowers the

peak of the frequency response curve by ∼1 MHz. A Q-value of ∼150 was established for

the dissociator resonant cavity .

The combination of two outside capacitors is used to minimize the power reflected from

the dissociator RF circuit while maximizing the forward power. The “Load” capacitor is

connected in series with the RF coil, and the “Tune” capacitor is in parallel. Both capaci-

tors are remotely controlled. The Tune and Load capacitors are adjusted until a minimum

reflected power is achieved. The minimum reflected power occurs when the load impedance

of the effective dissociator RF circuit satisfies Re(Z) = 50 Ω and Im(Z) = 0.

The atomic gas is ejected out of the dissociator into the ABS through a system of aper-

tures, nozzle-skimmer-collimator. The diameters of the nozzle, skimmer and collimator are

chosen to match the acceptance of the first sextupole system. The nozzle is cooled to 70 K

in order to avoid the recombination of the dissociated atoms into molecules on its surface.

Also, the cold nozzle cools the atomic beam, thus reducing the velocity of the individual

atoms, which results in the cold atomic beam being focused more effectively in the sextu-

pole system. The nozzle is cooled by a single stage GM type cold head with an external

helium compressor which supplies 60 Watts at 80 K. The nozzle temperature is controlled

by a heater-sensor combination connected to the PID controller. Four Cernox CX-1070-CU

sensors are used to monitor and control the temperature on the cold head, nozzle and along

the solid copper arm which connects the cold head to the nozzle.

To reduce the recombination rate further, a trace amount of O2 gas (∼ 0.5% of the H2

flow) is injected into the dissociator. The oxygen molecules combine with the hydrogen (deu-

terium) atoms to form water which, in turn, freezes on the surface of the nozzle. The ice on
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the nozzle provides a surface coating which reduces the probability of atomic recombination.
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Figure 3-4: Unpolarized Gas Feed System (UGFS). The UGFS is capable of flowing both
hydrogen and deuterium gases.

The BLAST target is also equipped with the Unpolarized Gas Feed System (UGFS). The

UGFS is used for systematic false asymmetry measurements and luminosity calibrations.

Both hydrogen and deuterium gases are fed by the UGFS directly into the target cell (see

fig 3-4.) The flow rates in the UGFS are controlled by the MFCs. However, the precision of

the MFC is not sufficient for the luminosity calibration purposes. For this reason a buffer

system was attached to the UGFS to better monitor a gas flow into the target cell. The

precision in the flow rate measurement with the buffer system is better than 1%.
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3.1.1 Performance of the RF Dissociator

Before the RF dissociator was used in the full ABS configuration, its performance was studied

with a Quadrupole Mass Analyzer (QMA 200). The vacuum chamber with the QMA inside

was placed underneath the nozzle. The QMA vacuum chamber was separated from the nozzle

by a set of apertures in oder to limit the gas that scatters off the vacuum chamber walls

from entering into the QMA. The atomic beam out of the nozzle was chopped by a chopper

wheel in order to separate the atomic beam signal from background. Correspondingly, the

lock-in amplifier was used to extract the AC component of the QMA analog signal.

The objective of this study was to measure the efficiency of the RF dissociator in break-

ing up the molecules into atoms which is described by the degree of dissociation, αH/D.

Numerically αH/D is defined as

αH/D =
P 1

H/D

P 1
H/D + 2κvP 2

H/D

, (3.1)

where P 1
H/D and P 2

H/D are the partial pressures of the atomic and molecular gases, respec-

tively. The correction factor κv ≈ 1√
2

is due to the difference in the atomic and molecular

velocities. The value of the degree of dissociation measured with the QMA can be redefined

in terms of signal amplitudes in the QMA as

αH/D =
S1

H/D

S1
H/D + 2κdetκvS2

H/D

, (3.2)

where S1
H/D and S2

H/D are the respective atomic and molecular signals and κdet is a relative

detection probability in the QMA. The detection probability, κdet is a function of the gas type

and the QMA acceptance only. It should be constant over all flows and nozzle temperatures.

Figure 3-5 shows the quantity κdet measured for two different types of gases and various

nozzle temperatures as a function of the gas flow into the dissociator. Parameter κdet is

constant over all flows and has two distinct values for hydrogen and deuterium gas.

The fraction of dissociation was measured for hydrogen and deuterium gas as a function

of the RF power1. The dissociation fraction, αmax
H/D of ∼90% was achieved for both gases2 (see

1The RF power was measured at the output of the RF supply. However, there is close to 40% power loss
in the cable.
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Figure 3-5: Relative QMA detection probability κdet as function of the gas flow into the
dissociator for deuterium (solid square) at 85 K and for hydrogen at 65 K (solid triangle),
75 K (solid upside-down triangle), 80 K (open circle), 100 K (open square), 120 K (open
triangle), 85 K (open diamond).

fig. 3-6). As expected, a higher flow rate corresponding to a higher molecular density inside

of the dissociator requires more RF power to reach a high level of dissociation. A slight

difference in αmax
H/D (< 10%) was observed as a function of the nozzle temperature within the

range of 60-100 K. The optimal nozzle temperature was chosen to be 70 K. The optimal flow

rate of oxygen gas was found to be 50 % higher for hydrogen gas than for deuterium.

3.2 Focusing in a Sextupole Magnet System

A set of sextupole magnets is used to focus and defocus atoms with the magnetic moments

of µ = µBgSmS, where mS = ±1
2

is the projection of an electron spin in the atom3 and µB

is the Bohr magneton. The spin of an atom in the external magnetic field is oriented in the

direction of that field, ~µ = µB̂. Hence, the force on the atom passing through the magnetic

field can classically be expressed as

~F = ~∇(~µ · ~B) = µ · ~∇B. (3.3)

2This measurement was done with the BLAST magnet off. The magnetic shield around the dissociator
is installed to achieve the same performance with the BLAST magnet on.

3To a very good approximation, the nuclear magnetic moment is neglected in the magnetic focusing
calculation, since µB � µN .
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Figure 3-6: The atomic fraction of hydrogen (top) and deuterium (bottom) gas measured by
the QMA immediately outside of the dissociator’s nozzle as a function of the RF power.
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The components of this force can be written in Cartesian coordinates as

Fx = µ(
∂Bx

∂x
B̂x +

∂By

∂x
B̂y)

Fy = µ(
∂Bx

∂y
B̂x +

∂By

∂y
B̂y),

(3.4)

where the magnetic sextupole field is expressed in cylindrical coordinates as

B(r) = B0(z)
(

r

r0

)2

Bx = B0(z)
x2 − y2

r2
0

By = −B0(z)
2xy

r2
0

,

(3.5)

where the equality ~∇ · ~B = 0 is used. The quantity B0(z) is the amplitude of the pole-tip

field of the sextupole magnet and r0 is the pole-tip radius. Using eqn. 3.3, the total force

on the atom is

~F = 2µB0
~r

r2
0

. (3.6)

However, the ABS operates in the strong magnetic field created by the BLAST toroid.

Following the established ABS coordinate system this field is generally in the x̂ direction.

Hence, the x-component of the field, Bx in eqn. 3.5, is modified as

B′
x = Bx + Bext. (3.7)

Accordingly, the components of the magnetic forces on the atom are expressed in Cartesian

coordinates as

F ′
x =

2µB0

B′ x
(

B0(
r

r0
)2 + Bext

)

F ′
y =

2µB0

B′ y
(

B0(
r

r0

)2 − Bext

)

,
(3.8)

where

B′ =
√

B′2
x + B2

y

The magnitude of the total magnetic force remains unchanged. However, the force, F ′, is no
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longer purely along r̂. By using eqn. 3.8 the full expression for the radial component of the

sextupole force exerted on the atoms in the external magnetic field is

~F ′

F
· ~r

r
=

1 + b
r2
0

r2 cos(2θ)
√

1 + 2b
r2
0

r2 cos(2θ) + b2 r4
0

r4

, (3.9)

where

b = Bext

B0
,

tan(θ) = y
x
,

and F is defined in eqn. 3.6.

The effect of the external magnetic field increases as the radius, r, goes to zero. This

is due to the fact that the magnetic field in a sextupole magnet goes to zero at the origin.

This means that a change in the external magnetic field, Bext, the pole-tip field, B0, or the

radial position dependent, B(r), produces the same effect on the radial component of the

sextupole force and can be studied by simply varying the parameter b.
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Figure 3-7: Radial component of the force, F ′
r, acting on the atom inside of a sextupole

magnet in the presence of the external magnetic field, Bext, plotted for different values of
b(r) = Bext/B(r) vs. azimuthal coordinate, θ.

Figure 3-7 shows a plot of the radial component of the magnetic sextupole field, F ′
r,
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for different values of Bext/B(r) vs. the azimuthal coordinate, θ, of an atom inside of a

cylindrical magnet. In the presence of a small, non-zero external magnetic field, the force on

an atom in the sextupole system is reduced, but it remains in the proper direction. As the

parameter b increases, the force changes sign in some intervals of θ. At θ = 0◦ and 180◦ the

magnetic force has a magnitude of 1 and points in the +r̂ direction, whereas at θ = 90◦ and

270◦ the force is exactly in the opposite direction. At the azimuthal angles of 90◦ and 270◦

the force on the atoms has only a y-component, F ′
y from eqn. 3.8. Conversely, at θ = 0◦

and 180◦ the force is purely in the x̂ direction. Hence, in the strong external magnetic field

limit, the F ′
x component of the force remains the same as Fx (the field in the absence of Bext)

while F ′
y switches sign. When this happens, the sextupole focusing is significantly reduced

and the atoms in those positions along the azimuthal direction get completely defocused.

This subtle effect was not observed in any other atomic beam sources, since all of them

have been operated in the presence of only weak external fields. Once the significance of

this phenomenon was realized4 the external field value was accounted for in the ray trace

program. The results are plotted in figure 3-8 [120]. The figure clearly shows a strong

defocusing due to the external BLAST field. The transmission drops by almost a factor of

two. The only way to reduce this effect is to add magnetic shielding to the sextupole magnet

system. The result of shielding was a significant increase in the atomic beam intensity (see

the discussion of the intensity results in section 3.6.1).

3.2.1 ABS Sextupole Magnet System at BLAST

The original sextupole magnet system was received from NIKHEF. However, it soon became

apparent that the pole-tip fields of these magnets were not up to specifications. Most prob-

ably these permanent magnets were damaged at Bates during heat activation of the pumps

in the area close to the magnets. A new set of magnets was ordered. The material for the

new set was chosen to be VAC Vacomax 225HR-2:17 samarium cobalt which has better high

temperature characteristics.

Each magnet consists of 24 individual segments (see fig. 3-9) that were assembled and

epoxied together at Bates. In all there are seven sextupole magnets used in the ABS.

4It was first assumed that the effect had to be small due to the strength of the pole-tip field of the
sextupole magnet.
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Figure 3-8: The effect of the external BLAST magnetic field on focusing in the sextupole
system. The left panel shows focusing with no external field. The right panel shows focusing
with a strong external magnetic field.The circle is the injection tube into the target cell.
Due to the defocusing caused by the external magnetic field the transmission through the
sextupole system is reduced by a factor of two.

Magnets 1, 2 and 3 have a tapered inner diameter design, whereas magnets 4, 5, 6 and 7

have a constant diameter.

The magnetic field of an untapered sextupole magnet is written in cylindrical coordinates

as a function of its radius and length as [121]

B(r, z) = B0

(

r

r0

)2 1

1 + es

s =
5
∑

n=0

andn

d =
z − L/2

2r0
,

(3.10)

where L is the length of a magnet, B0 and r0 are the pole-tip field and pole-tip radius of

the magnet, respectively. In case of a magnet with a tapered inner diameter, the field has a
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Figure 3-9: A diagram of a typical sextupole
magnet used to focus/defocus atoms passing
through the opening inside. A magnet con-
sists of 24 permanent magnets epoxied to-
gether. The magnetic axis is rotated by 45◦

in each successive piece.

Magnet NIKHEF BATES
Pole-tip Field, kG Pole-tip Field, kG

1 8.3 13.5
2 9.1 12.4
3 9.9 12.0
4 11.6 11.6
5 15.6 12.7
6 15.4 12.5
7 15.2 11.9

Table 3.1: Pole-tip field values of the individual sextupole magnets from NIKHEF and Bates.
The strength of the first three magnets is improved.

more complex form

B(r, z) = B0

(

r

r0

)2 1

1 + b1z + b2z2

1

1 + es

r0 =
r1 + r2

2

d =











z−L/2
2r1

for z < 0

z−L/2
2r2

for z > 0
,

(3.11)

where s is defined in equation 3.10, r1 and r2 are the inner radii at the top and bottom of

the cylindrical magnet.

All seven new magnets were carefully mapped at Bates and the values were fitted for all

parameters in eqns. 3.10 and 3.11. The pole-tip field values are listed in table 3.1. Even

though magnets 4 through 7 show no improvement, the intensity is most sensitive to the
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strength of the top three magnets (1, 2 and 3). The magnets were encased in steel to reduce

the effect of the BLAST magnetic field described above.

The measured sextupole magnetic fields were used in a ray-tracing program (see fig. 3-10)

which is capable of tracking hydrogen or deuterium atoms through the ABS volume. The

velocity distribution of the atoms streaming from the nozzle is assumed to be Maxwellian

z (m)

r
 
(
m
)

Figure 3-10: Ray tracing in the ABS. The atomic beam is moving from left to right. The
top (very left) sextupole system focuses the atoms in hyperfine states with mS = +1

2
. In the

left figure the atoms’ electron spin of mS = +1
2

transition into mS = −1
2

between the top
and bottom sextupole sets and get defocused in the bottom sextupole system. In the right
figure the atoms keep their electron spin and get focused in the bottom sextupole set.

f(v) =
α

v

(

mv2

2kBT

)2

e
−m(v−v0)2

2kBT , (3.12)

where T is the temperature at the nozzle (≈ 70 K), m is the mass of an atom, v is the

velocity of an individual atom and v0 is the average velocity, α is the arbitrary constant

used for normalization and kB is the Boltzmann constant. The distances between the ABS

elements were optimized for the intensity and polarization simultaneously. The sextupoles

were designed to focus all atoms in a hyperfine state with mS = +1
2

and defocus all atoms in

mS = −1
2

states. The tracking simulation was used to optimize the focusing of the mS = +1
2

atoms in the top sextupole system and focusing/defocusing of the atoms in the bottom

sextupole system. The defocusing in the bottom sextupole system was optimized for those
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atoms in the simulation that change their hyperfine population from a mS = +1
2

to mS = −1
2

state between the top and bottom sextupoles systems5 (see fig. 3-10). The focusing in the

bottom sextupole was studied when there was no hyperfine population transition. Table 3.2

ABS Elements Distances (mm)
Skimmer 12.0

Collimator 52.0
Sextupole #1 65.7
Sextupole #2 111.7
Sextupole #3 157.7
Sextupole #4 208.4
Sextupole #5 589.6
Sextupole #6 681.0
Sextupole #7 721.6

Cell Inlet 1056.0

Table 3.2: Distances from the nozzle of the focusing and collimating elements in the ABS.

shows the distances from the nozzle in the present ABS configuration.

3.3 Polarization Techniques

3.3.1 Hyperfine States of Hydrogen and Deuterium

The polarization technique in the Atomic Beam Source exploits the energy splitting in a

single electron atom due to the hyperfine interaction, which arises from the interaction

between the spins of the electron (~S) and the nucleus (~I). The pure hyperfine Hamiltonian

has 2S +1 distinct eigen-values. The hyperfine energy levels are further split when the spins

of the electron and nucleus couple to the external magnetic field. In the presence of the

external magnetic field, ~B, the total hyperfine interaction Hamiltonian can be written as

HH/D
HF = hν

H/D
HF

~I · ~S + µB(g
H/D
I

~I + gS
~S) · ~B ≈ hν

H/D
HF



~I · ~S + ~S ·
~B

B
H/D
c



 , (3.13)

were µB is the Bohr magneton and g
H/D
I is the gyromagnetic factor of hydrogen (gH

I =

−0.00304) or deuterium (gD
I = −0.00047) nuclei. The gyromagnetic factor g

H/D
I is orders of

magnitude lower than that of the electron (gS = 2.0023). Thus, to a high degree of precision,

5The hyperfine population transitions will be discussed in section 3.3.2.
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the external magnetic field only couples to the spin of the electron. The characteristic

frequency of the hyperfine interaction in eqn. 3.13 is defined as

hν
H/D
HF = µB (gS + gI) BH/D

c ≈ µBgSBH/D
c , (3.14)

where BH/D
c is the “characteristic” magnetic field. The characteristic hyperfine quantities,

ν
H/D
HF and BH/D

c , are known to high precision [122].

νH
HF = 1.420GHz and BH

c = 507G

νD
HF = 0.327GHz and BD

c = 117G

(3.15)

The expectation value of the interaction Hamiltonian, HH/D
HF , can be found by calculating the

expectation values of 〈F, mF ; S, mS|~I · ~S|I, mI ; F, mF 〉 and 〈F, mF ; S, mS|Sz|I, mI ; F, mF 〉,
separately, where the direction of the magnetic field can be taken to be purely in the z-

direction. The total angular momentum is defined as ~F = ~I + ~S with mF being its z-

component.

In the matrix form the interaction Hamiltonian can thus be written for hydrogen as 6

HH
HF =

hνH
HF

4





















1 + 2x 0 0 0

0 −1 + 2x 0 2

0 0 1 − 2x 0

0 2 0 −1 − 2x





















, (3.16)

6The details of the calculations can be found in reference [123].
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where x = B
Bc

. For deuterium, the interaction Hamiltonian has the form

HD
HF =

hνD
HF

2



































1 + 3
2
x 0 0 0 0 0

0 3
2
x 0 0 0

√
2

0 0 −1 + 3
2
x 0

√
2 0

0 0 0 1 − 3
2
x 0 0

0 0
√

2 0 −3
2
x 0

0
√

2 0 0 0 −1 − 3
2
x



































. (3.17)

The energy levels are obtained by diagonalizing the interaction Hamiltonian in eqns. 3.16 and 3.17

Hydrogen Deuterium

νH
1 =

νH
HF

4
(1 + 2x)

νH
2 =

νH
HF

4
(−1 + 2

√
x2 + 1)

νH
3 =

νH
HF

4
(1 − 2x)

νH
4 =

νH
HF

4
(−1 − 2

√
x2 + 1)

νD
1 =

νD
HF

3
(1 +

3

2
x)

νD
2 =

νD
HF

6
(−1 +

√

(3x + 1)2 + 8)

νD
3 =

νD
HF

6
(−1 +

√

(3x − 1)2 + 8)

νD
4 =

νD
HF

3
(1 − 3

2
x)

νD
5 =

νD
HF

6
(−1 −

√

(3x − 1)2 + 8)

νD
6 =

νD
HF

6
(−1 −

√

(3x + 1)2 + 8)

(3.18)

Figure 3-11 shows plots of the hyperfine energy level as a function of the external magnetic
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field. This figure illustrates that when the external field is turned off the energy levels become

2F + 1 degenerate, whereas at the non-zero external magnetic field each of these two levels

split further into 2F + 1 levels.

Hydrogen states |1〉 through |4〉 and deuterium states |1〉 through |6〉 are the normal-

ized eigenvectors of the interaction Hamiltonian, HH/D
HF . The wave functions are the linear

combinations of states |F, mF ; mI , mS〉 written in the so-called Breit-Rabi basis [124] as

Hydrogen Deuterium

|1〉 = |1, 1; 1
2
, 1

2
〉

|2〉 = α|1, 0;− 1
2
, 1

2
〉 + β|1, 0; 1

2
,−1

2
〉

|3〉 = |1,−1; 1
2
,−1

2
〉

|4〉 = α|0, 0;− 1
2
,−1

2
〉| − β|0, 0; 1

2
, 1

2
〉,

where

α =
√

1
2
(1 + x√

x2+1
)

β =
√

1
2
(1 − x√

x2+1
)

|1〉 = |3
2
, 3

2
; 1, 1

2
〉

|2〉 = α+|32 , 1
2
; 0, 1

2
〉 + β+|32 , 1

2
; 1,−1

2
〉

|3〉 = α−|32 ,−1
2
;−1, 1

2
〉 + β−|32 ,−1

2
; 0,−1

2
〉

|4〉 = |3
2
,−3

2
;−1,−1

2
〉

|5〉 = α−|12 ,−1
2
; 0,−1

2
〉 − β−|12 ,−1

2
;−1, 1

2
〉

|6〉 = α+|12 , 1
2
; 1,−1

2
〉 − β+|12 , 1

2
; 0, 1

2
〉,

where

α± =
√

1
2
(1 + (3x±1)√

(3x±1)2+8
)

β± =
√

1
2
(1 − (3x±1)√

(3x±1)2+8
).

(3.19)

One can note from eqn. 3.19 that some eigenstates are “pure” states while some are functions

of the external magnetic field.

The electron polarization, Pe, and the nuclear vector polarization, Pz, of an atom in an

external magnetic field are defined as the expectation values of 〈Sz〉 and 〈Iz〉, respectively.

Also, in the case of deuterium one can define a tensor polarization, Pzz, as the expectation

value of 〈(3I2
z − 2)〉. Using eqn. 3.19 the polarizations can be expressed in terms of the

external magnetic field as

86



Hydrogen Deuterium

0 1 2 3 4 5 6

-3

-2

-1

0

1

2

3

4
F Fm Im Sm

|1> 1 +1
2
1+ 

2
1+ 

|2> 1 0
2
1- 

2
1+ 

|3> 1 -1 2
1- 2

1- 

|4> 0 0
2
1+ 

2
1- 

c
HB

B x = 

 (
G

H
z)

H
F

H ν

0 1 2 3 4 5 6 7
-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8 F Fm Im Sm
|1>

2
3

2
3+ + 1

2
1+ 

|2> 2
3

2
1+   0 2

1+ 

|3>
2
3

2
1- - 1

2
1+ 

|4>
2
3

2
3- - 1

2
1- 

|5> 2
1

2
1-   0 2

1- 

|6>
2
1

2
1+ + 1 

2
1- 

c
DB

B x = 
 (

G
H

z)
H

F
D ν

Figure 3-11: Hyperfine structure of hydrogen (left) and deuterium (right).

Hydrogen Deuterium

Pe = N1 − N3 + (N2 − N4)
x√

x2+1

Pz = N1 − N3 + (N4 − N2)
x√

x2+1

Pe = (N1 − N4) + (N2 − N6)(α
2
+ − β2

+)

+(N3 − N5)(α
2
− − β2

−)

Pz = N1 − N4 + N2β
2
+ − N3α

2
+ − N5β

2
− + N6α

2
−

Pzz = 1 − 3N2α
2
+ − 3N3β

2
+ − 3N5α

2
− − 3N6β

2
−,

(3.20)

where Nk is the relative population of the |k〉th eigenstate.

The discussion of the nuclear polarization as a function of the atomic hyperfine state is

important in the context of the atomic states injected into the target cell, since the atomic

states that produce the best nuclear polarization at a given holding magnetic field should be

selected for injection.

Figure 3-12 shows the electron polarization, Pe, and the nuclear polarization, Pz, for each

hyperfine state of hydrogen. States |1〉 and |3〉 are independent of the static field. However,

the polarizations of the |2〉 and |4〉 states grow as a function of the field. The holding field was
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Figure 3-12: Electron (left) and nuclear vector (right) polarizations of each hydrogen hy-
perfine state as a function of the external magnetic field. The vertical band indicates the
holding field in the BLAST target.

chosen to be ∼450 Gauss7 indicated by a gray vertical band in the picture. Although both

states |1〉 and |4〉 produce positive nuclear polarization, the holding field is not strong enough

for state |4〉 to have a high polarization. Thus, injecting both states |1〉 and |4〉 effectively

dilutes the nuclear polarization. The analog applies to the negative nuclear polarization

states. Due to this, a single state injection mode was chosen for the hydrogen target, i.e.

the state |1〉 is injected for Pz = 1 and |3〉 for Pz = −1.

Figures 3-13 and 3-14 show the electron polarization, Pe, the nuclear vector polarization,

Pz, and the nuclear tensor polarization, Pzz, of the individual hyperfine states of deuterium.

With the deuterium target, the holding field is high enough for a two state injection. The

difference is due to a lower critical field in deuterium than in hydrogen (see eqn. 3.15).

One can notice from the deuterium polarization plots that the states which produce vector

polarization, Pz = ±1, also produce tensor polarization, Pzz = +1. This is an important

aspect of the polarization scheme employed at BLAST.

7This is the highest field limit of the holding field magnet.
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Figure 3-13: Electron (left) and nuclear vector (right) polarization of each deuterium hyper-
fine state deuterium as a function of the external magnetic field. The vertical band indicates
the holding field in the target.

3.3.2 RF Transitions

The previous section described the hyperfine states in the external static magnetic field,

where the population of each hyperfine state remains unchanged. However, when the external

time-varying magnetic field is applied the hyperfine states can exchange their populations.

This process is typically referred to as the hyperfine RF transitions.

There are two possible cases of the RF transitions. In the first case, the time-varying

magnetic field is parallel to the static magnetic field, such that the total magnetic field is

~B(t) = (B0 + BRF cos(ωt))ẑ. (3.21)

In this case the interaction Hamiltonian has the same matrix form as in eqns. 3.16 and

3.17, where x(t) = B(t)/Bc is now a function of time. This type of RF transition is called a

σ-transition. The eigen-states have a time-dependent Breit-Rabi basis. Since only hydrogen

states |2〉 and |4〉 are functions of an external magnetic field, the only possible RF σ-transition

in hydrogen is |2〉 − |4〉. Similarly, in deuterium, possible σ-transitions are |3〉 − |5〉 and
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Figure 3-14: Nuclear tensor polarization, Pzz of each deuterium hyperfine state as a function
of the external magnetic field. The vertical band indicates the holding field in the target.

|2〉 − |6〉. Accordingly, all RF σ-transitions satisfy the ∆mF = 0 selection rule.

In the second case, the time-varying magnetic field is perpendicular to the static magnetic

field, such that the total field has the following form

~B(t) = B0ẑ + BRF cos(ωt)x̂. (3.22)

The interaction Hamiltonian corresponding to this field has a more complex form

H
H/D
HF (t) = hν

H/D
HF

(

~I · ~S + Sz ·
Bz

B
H/D
c

+
1

2
(S+ + S−) · Bx(t)

B
H/D
c

)

, (3.23)

where S+ and S− are the raising and lowering spin operators. Solving the time-dependent

Schrödinger equation,

ih̄
d

dt
|Ψ〉 = H

H/D
HF (t)|Ψ〉, (3.24)
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with this Hamiltonian yields the frequencies at which the RF transitions occur as a function

of the external static magnetic field. These RF transitions are called π-transitions. As such,

RF π-transitions satisfy the ∆mF = ±1 selection rule.

Both σ- and π-transitions have one frequency for the particular value of the external

static magnetic field at which they occur. However, the atoms in the atomic beam spend

different amounts of time in the magnetic field (both static and RF), due the Maxwellian

profile of the velocity distribution. This fact limits the efficiency of the RF transitions. For

this reason, the high frequency RF transitions are done in the adiabatic regime [125, 126].

In the adiabatic regime an atom passes through the static magnetic field, B0, super-

imposed with a gradient and a high frequency time-varying magnetic field, Bgr and BRF ,

respectively. The total magnetic field seen by an atom in case of the π-transition is

~B(y, t) = (B0 + Bgrvxt)ẑ + BRF cos(ωt)x̂, (3.25)

where vx is the velocity of an atom passing through the gradient field. The total static

magnetic field (B0 + Bgrx) slowly (adiabatically) changes along the flight path of an atom.

Typically, the Schrödinger equation (eqn. 3.24) for the Hamiltonian with the magnetic

field in eqn. 3.25 is solved numerically. However, R.J. Philpott [126] found an exact analytical

solution for the case where there are only two hyperfine states exchanging their populations.

In this simpler case the transition probability was found to be

P = 1 − exp−2πκ, (3.26)

where κ is defined as

κ =

∣

∣

∣

∣

∣

∣

µBgSB2
RF

2d(B0+Bgrvxt)
dt

h̄

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

µBgSB2
RF

2Bgrvxh̄

∣

∣

∣

∣

∣

. (3.27)

Hence, for the probability of an adiabatic transition, P , to be close to unity, the following

adiabatic condition needs to be satisfied

Bgr �
µBgSB2

RF

2vxh̄
. (3.28)

It follows that for a proper match between the gradient field, Bgr, and the RF field amplitude,
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BRF , can provide close to 100% efficiency of an RF transition.

Medium Field and Weak Field RF Transitions

The Medium Field Transition (MFT) and Weak Field Transition (WFT) are RF π-transitions.

In the medium and weak field transition regimes the hyperfine states of the same multiplet

exchange their populations. The possible π-transitions in hydrogen and deuterium are listed

below.

Hydrogen Deuterium

|1〉 ↔ |2〉 (MFT1-2)

|2〉 ↔ |3〉 (MFT2-3)

|1〉 ↔ |2〉 (MFT1-2)

|2〉 ↔ |3〉 (MFT2-3)

|3〉 ↔ |4〉 (MFT3-4)

|5〉 ↔ |6〉 (MFT5-6)

(3.29)
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Figure 3-15: The frequency of the RF π-transitions in hydrogen (left) and deuterium (right)
as a function of the static magnetic field. Horizontal lines indicates the frequency at which
the MFT and WFT transition units are operated during the BLAST experiment. A negative
gradient corresponds to the field seen by the atom changing from right to left, while a positive
gradient corresponds to change from left to right.

Figure 3-15 shows the frequency of these transitions in the MFT and WFT units as a

function of the static magnetic field. A choice of the positive gradient along the flight path

of a particle induces a sequence of hydrogen RF transitions MFT2-3 followed by MFT1-

2 and of deuterium RF transitions MFT3-4, MFT2-3, MFT1-2, respectively. The resulting

92



transition is MFT1-3 in hydrogen and MFT1-4 in deuterium. The negative gradient produces

the hydrogen RF transition MFT2-3 and deuterium RF transition MFT3-4.8 The MFT

frequencies of the individual transitions are chosen so that the magnetic fields at which the

transitions occur are well separated.

The WFT transition is operated at a lower frequency at which the static magnetic fields of

the hyperfine transitions are not separated. The atoms passing through the WFT experience

a static field at which all π-transitions are taking place at once9. Therefore, the WFT

operates with a positive gradient along the atomic flight path, inducing the transition WFT1-

3 in hydrogen and cascading WFT1-4 in deuterium. In fact, the WFT is typically used to

induce hydrogen |1〉-|3〉 and deuterium |1〉,|2〉-|3〉,|4〉 transitions in the atomic beam, since

the WFT requires a lower gradient field thus improving the transition efficiency.

Strong Field RF Transition

The Strong Field Transition (SFT) refers to the RF σ-transition. The atoms passing through

the SFT change their hyperfine state population between states in different multiplets (∆F =

±1) with ∆mF = 0. Hence, possible RF σ-transitions in hydrogen and deuterium are

Hydrogen Deuterium

|2〉 ↔ |4〉 (SFT2-4)
|2〉 ↔ |6〉 (SFT2-6)

|3〉 ↔ |5〉 (SFT3-5).

(3.30)

The condition in eqn. 3.28 also applies to the σ-transition. Therefore, a well-chosen

gradient field is also important to the efficiency of the SFT transition. Figure 3-16 shows

the frequencies of the RF σ-transitions in hydrogen and deuterium as a function of the

external magnetic field. The two σ-transitions in deuterium are well separated. The SFT2-4

transition in hydrogen is not used in the BLAST polarization scheme while both the SFT2-6

and SFT3-5 transitions in deuterium are required for the target operation.

8It is assumed here that the hydrogen hyperfine states |3〉 and |4〉 and deuterium hyperfine states |4〉,
|5〉 and |6〉 have been rejected in the top sextupole system before entering the MFT unit . For details see
section 3.3.3

9These are called cascading transitions.
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Figure 3-16: The frequency of SFT RF σ-transitions in hydrogen (left) and deuterium (right)
as a function of the magnetic field. Horizontal lines indicate the frequency at which the SFT
unit is operated.

3.3.3 Polarization States in the Target

As discussed before, the hydrogen atoms are injected into the target cell in the single state

mode due to the limitation of the holding field magnet. Since the critical field of deuterium

is significantly lower, both vector and tensor polarization states in the target are prepared

using the two state injection.

The hydrogen atoms are ejected from the nozzle with all four hyperfine states equally

populated by n1, n2, n3, n4. Vector plus and vector minus polarized hydrogen atomic beam

is separately injected in the target cell after it undergoes a sequence of transitions. For the

vector plus state the transition sequence is











n1

n2

n3

n4











6 − pole
−→











n1

n2

0
0











MFT
−→











n1

0
n3

0











6 − pole
−→











n1

0
0
0











, (3.31)

and for the vector minus state the sequence is











n1

n2

n3

n4











6 − pole
−→











n1

n2

0
0











MFT
−→











n1

0
n3

0











6 − pole
−→











n1

0
0
0











WFT
−→











0
0
n3

0











. (3.32)

The unpolarized deuterium atomic beam exiting the nozzle has all six hyperfine states
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equally populated by n1, n2, n3, n4, n5, n6. The beam of deuterium atoms becomes vector

plus, vector minus and tensor minus polarized by passing through a sequence of transitions.

For the vector plus beam the transition sequence is





















n1

n2

n3

n4

n5

n6





















6 − pole
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



















n1

n2

n3

0
0
0





















MFT
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
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
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
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
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
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0
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0
0




















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
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


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








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0
0
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


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


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
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0
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

, (3.33)

for the vector minus the sequence is


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
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, (3.34)

and for the tensor minus the transition sequence is


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
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


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

0
n2

0
0
n5

0





















. (3.35)

Table 3.3 has a compilation of the required transitions for all polarization states injected

into the target cell at BLAST.

As noted before, the vector plus and vector minus states in deuterium are also a tensor

plus state. Therefore, the experiments that require both vector and tensor polarized deu-

terium target can be run simultaneously with the sequence of Pz = +1,−1 and Pzz = −2

injected. In this “three-state” scheme the experiment requiring the tensor polarized target

runs 100% of the time, while the experiment on the vector polarized target uses 2/3 of the

total run time. Compared to the sequentially running of the vector and tensor polarization
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Hydrogen Deuterium

MFT
SFT
WFT
Pz

Pzz

Vector + Vector -
π2−3 π2−3

off off
off π1−3

+1 -1
- -

Vector + Vector - Tensor -
π3−4 π3−4 π1−4

σ2−6 off σ3−5

off π1,2−3,4 off
1 -1 0
1 1 -2

Table 3.3: RF transitions used in the ABS operation to produce vector polarized hydrogen
and vector/tensor polarized deuterium atomic beams.

experiments this effectively increases the figure of merit for the vector polarization experi-

ment by 30 % and for the tensor polarization experiment by a factor of 2. For example, if

there are vector and tensor target experiments designed to run 1000 hours each, with the

“three-state” scheme the tensor target experiment runs for 2000 hours and the vector target

experiment runs for 2/3 × 2000 hours.

3.4 The RF Transition Units

The operation of the RF units is controlled by a special sequencer program which manages

the flipping of the polarization states in the target. During each polarization change which

occurs every 5 minutes an RF unit magnet is cycled through the hysteresis loop before a

new field value is set.

3.4.1 MFT

The Medium Field Transition Unit had to be redesigned to fit the BLAST specifications.

In redesigning the new MFT unit, the problem of the strong magnetic field created by the

BLAST toroid had to be addressed. In the region of the MFT the BLAST spectrometer

field is ∼ 2.2 kG with a strong vertical gradient (solid curve in fig. 3-17).

The full TOSCA magnetic field calculation was used to study possible magnetic shielding

schemes. The design was adopted in which a thick metal shield reduces the external BLAST

magnetic field to ∼1.3 kG and a set of water cooled copper coils capable of generating fields

inside of the MFT of up to 2 kG sets the correct static field (dashed curve in fig. 3-18).

However, due to a simulation flaw, the magnetic coils were heavily over designed. The
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Figure 3-17: TOSCA model of the magnitude of the BLAST magnetic field along the path
of the atomic beam. The atomic beam moves from right to left in this picture. The full
curve is the field without the MFT shielding and the dashed curve is the field after the MFT
shielding was put into the TOSCA model. The MFT unit is located between 70 and 90 cm
in Y.

magnetic shield turned out to be more efficient in shielding the external BLAST field (down

to ∼200 G) than expected. It is believed that the TOSCA simulations were performed with

a lower grade steel than the one used to build the magnetic shield. Hence, the coils are

operated at a significantly lower current than they were designed for. This, however, does

not preclude the efficient operation of all RF transitions in the MFT. The reduction of the

BLAST field by the magnetic shield of the MFT is localized only to the region of the MFT,

as can be seen in fig 3-17 which shows the magnetic field profile along the flight path of the

atomic beam predicted by TOSCA simulation.

After the BLAST field is canceled by the magnetic shield a small positive field gradient
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along the flight path of the atomic beam remains. This small residual gradient is useful for

some RF transitions in the MFT. At the same time the MFT unit is equipped with a set of

gradient coils, which can easily reverse the residual positive gradient.

The RF field is fed into the MFT through the RF coil, which is 12 cm long solenoid with

6 turns and 3 cm in diameter. The time-varying magnetic field in the solenoid is parallel to

the flight path of the atomic beam. The RF frequency is remotely controlled inside the RF

power supply. A pick-up coil is used to monitor the amplitude of the RF field in the MFT

(see fig 3-19).

Figure 3-19: MFT RF unit which fits inside of the MFT magnet in fig. 3-18. The atomic
beam is directed downward. Not shown is the magnetic field Hall probe which is located on
the inside of the magnetic shield.

The static magnetic field created by the MFT coils is controlled by the PID loop. The

magnetic field is set by the sequencer which controls flipping of the target polarization states.

The current in the MFT coils is remotely adjusted while the Hall probe inside of the MFT

unit measures the magnetic field. The rate of the current adjustment is proportional to the
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difference between the set and measured fields. This PID loop operates until the field inside

of the MFT is correctly established. The PID loop stays active to correct any drifts of the

MFT static field away from the set value. The drifts of the static field in the MFT were

observed to be large enough to completely move the RF transitions off resonance. With the

PID loop on, the magnetic field is kept constant within 1 G.

3.4.2 WFT

The WFT unit is located in the lower part of the BLAST magnet, closer to the target (see

fig 3-1). This means that the BLAST field in the WFT unit is significantly lower (∼300

Gauss). A simple electromagnet is capable of producing a magnetic field large enough to

cancel the external BLAST field and the field due to the target holding magnet. Due to this

fact, the open geometry design of the WFT magnet was adopted from the NIKHEF design

(see fig. 3-21). The WFT unit shares the static and gradient field coils with the SFT. The

same PID loop mechanism that is used in the MFT is also used with the WFT/SFT magnet,

resulting in a magnetic field stability of less than 1 Gauss for all transitions.

Similarly to the MFT, the RF field is fed into the RF coil, producing the time-varying

magnetic field along the flight path of the atom beam essential to the π-transition. The

pick-up coil is used to monitor the amplitude of the RF field in the WFT (see fig 3-20)

3.4.3 SFT

The high frequency RF field is used to induce SFT transitions in the deuterium atomic beam.

The RF source for the SFT unit has a fixed frequency of 420 MHz. The RF power used

to induce an SFT transition in deuterium is ∼9 Watts. This level of power output requires

dynamic PID retuning capabilities as the RF conditions change inside of the cavity. The

changes in the RF conditions arise from the thermal heating of the copper cavity. To limit

the heating of the cavity the copper material of the cavity was silver-plated (see fig 3-20) .

The RF field in the SFT is created between two copper conductors inside of the RF

cavity with a large Q-value. The time-varying magnetic field is oriented along the static

field and perpendicular to the flight path of the deuterium atoms. The pick-up coil inside

of the SFT is used for both monitoring of the RF amplitude and the PID control of the RF
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Figure 3-20: The WFT and SFT RF units share the same magnet shown in fig. 3-21. The
top coil is the WFT RF coil and the box on the bottom is the silver plated SFT RF cavity.
The atomic beam is directed from top to bottom.

tuning circuit.

3.5 The Scattering Chamber

The target scattering chamber was also received from NIKHEF. It consists of a holding

field magnet capable of generating longitudinal and transverse magnetic fields, a target cell

on a holder with a cooling system and thin aluminum windows. Since the target chamber

is internal to the South Hall Ring, it shares vacuum with the ring. Thus, strong vacuum

pumping is needed to ensure reliable beam operation. The aluminum windows have to be
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Magnetic Shield

Static Field Coil

Gradient Field Coil

Figure 3-21: The TOSCA design of the SFT/WFT magnetic shield (blue) and magnetic
coils (red). The gradient coils (in red) are seen on the walls of the magnetic shield. The RF
cavities fit inside.

thin to reduce multiple scattering and energy loss of the particles exiting the target.

3.5.1 Gas in the Storage Cell

The storage cell is used to increase the luminosity over the pure polarized atomic beam

experiment while preserving the stored electron beam quality in the ring. The atomic beam

is injected through an inlet tube into a cylindrical cell of a small diameter, fig. 3-22. The

polarized atoms are confined by the cell around a stored electron beam thus increasing the

probability of a scattering reaction.
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Figure 3-22: Schematic of the atomic beam injected into the storage cell. The polarized
atomic beam is injected from the ABS into the inlet tube. The atoms diffuse in the cell until
they are pumped out. The electron beam passes through the cell from left to right. A small
hole at the bottom of the cell samples atoms injected into the cell. The density profile along
the target cell is approximately triangular.

The density profile along the target cell (z-profile) is approximately triangular [127].

ρ(z) =















2ρ0

l
(z + l/2) , z < 0

2ρ0

l
(l/2 − z) , z > 0

ρ0 = I0/Ctot,

(3.36)

where I0 is the intensity of the atomic beam into the cell, l is the length of the cell and Ctot is

the total conductance of the cell. Since there are three openings in the cell10 through which

10Two ends and the inlet tube. Plus there is a small exit hole straight below the inlet tube that samples
atomic beam. However, its conductance is negligible.
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the gas is pumped out, Ctot is written as

Ctot = Ccell + Cinlet,

Ccell = 2C0
d3

cell

lcell/2

√

Tcell

M
,

Cinlet = C0
d3

inlet

linlet

√

Tcell

M
,

(3.37)

where C0 = 3.81 × 103 cm3/s is the conductance constant, Tcell is the cell temperature in

Kelvin and M is the atomic mass of the target gas in atomic mass units (amu). The factor

of 2 in the equation for Ccell is due to the two open ends in the cell. The gas target thickness

per unit area is thus

ρtot =
∫ l/2

−l/2
ρ(z)dz = ρ0

l

2
, (3.38)

where ρ0 is defined in eqn. 3.36.

An increase in luminosity can be achieved by increasing the length of a cell, l. However,

due to the limited length of the target magnet, only data collected within 20 cm from the

center of the cell are useful in the analysis. Hence, l in eqn. 3.38 must remain constant and

increasing the length of the cell would increase the luminosity purely due to the decrease in

the total conductance, Ctot.

Three different cells were used during the commissioning and the production experiment.

Table 3.4 lists the conductances and densities for a given flow for these three cells11.

Cell #1 Cell #2 Cell #3
Cell Inlet Cell Inlet Cell Inlet

Length, l (mm) 400 125 600 125 600 150
Diameter, d (mm) 15 11.9 15 11.9 15 11.9

Temperature, T (K) 90 290 90 290 90 90
Conductance, C (×103 cm3/s) 8.62 6.19 5.76 6.19 5.76 2.87

Ctot (×103 cm3/s) 14.81 11.95 8.63
ρtot (×10−3 atoms/cm2) 1.6I0 2.51I0 3.48I0

Table 3.4: Three cells were used during this experiment. Listed here are cells’ geometries,
temperatures, conductances and density integrated over a whole length of the cell. I0 is the
ABS flow into the cell.

11Conductances are listed for the deuterium atoms. Conductances for hydrogen are larger by a factor of√
2.
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The low conductance value in cell #3 was achieved by increasing the cell length and

cooling the inlet tube. An increase in target thickness between cell #1 and #3 is a factor of

2.2. However, by factoring in a |z| < 20 cut, the increase in thickness is 66%. Close to 90 %

of all data used in this work were collected with cell #3.

Figure 3-23: Storage cell on the frame. The temperature sensors are located on the cell and
on the frame upstream and downstream from the center. An additional temperature sensor
(not shown) is on the cryo cold head.

3.5.2 Polarized Atomic Gas in the Storage Cell

In a polarized target experiment the luminosity is not the only quantity that needs to be

optimized. The Figure of Merit (FOM) of a polarization experiment is defined as

FOM = Polarization2 × Luminosity, (3.39)

where Polarization could be vector, Pz, or tensor, Pzz, target polarization or in many cases a

product of the beam and target polarizations. Therefore, preservation of a high polarization

of atoms in the storage cell is of the highest priority.
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Since no significant measurements were made to study different processes of polarization

loss in the BLAST target, the following discussion of the depolarization mechanisms in the

BLAST target will be purely qualitative and mostly based on the experiences from other

internal target experiments.

Depolarization Due to Recombination on the Wall

The time an atom spends in the cell is related to the conductance through the diffusive flow

equations by

τd =
πd2

celllcell
4Ctot

. (3.40)

During the time τd the atom collides with the cell walls on average 〈N〉 times. The number

of wall collisions experienced by an atom can be derived from the kinetic gas theory as [123]

〈N〉 =
πdcelllcell

8Ctot

〈v〉, (3.41)

where 〈v〉 =
√

kBT
M

is the average thermal velocity of an atom. Using eqn. 3.37 one can see

that the average number of bounces on the cell wall is purely a function of the cell geometry12

〈N〉 =
3

8
dcelllcell

(

linlet

d3
inlet

+
lcell
d3

cell

)

. (3.42)

The rate of the volume recombination is negligible at the density inside the cell. The only

time when the atoms can recombine is when they find themselves on the cell surface. Hence,

the recombination rate is proportional to the number of the wall bounces. The recombination

rate is also proportional to the dwell time of an atom on the cell wall during each bounce.

This time can be expressed in terms of Arrhenius law [128] as

τdwell = τ0e
Eb

kBT , (3.43)

where Eb is the surface adsorption energy characteristic to the chemistry of the surface.

Typically, the dwell time is on the order of ∼10−10 sec, which is much less than the time the

12This equation assumes that temperature of the inlet tube is the same as the cell temperature, as in cell
#3 setup.

106



atom spends between bounces. The recombination probability is parametrized as

Pr(T ) = k1e
T1
T + k2e

−T2
T , (3.44)

where the first term is due to an increase of the atom’s dwell time at a lower temperature

(Arrhenius law). The second term is interpreted as being due to the activation barrier needed

to be overcome by an atom to recombine with chemically bound atoms on the surface of

the cell. Hence, the recombination probability increases at a very low temperature due to

the dwell time and it also increases at high temperature due to an effective lowering of the

activation barrier.

No quantitative studies of the recombination were done with the ABS at BLAST. The

operation of the ABS is optimized based on extensive experience from other polarized gas

storage cell experiments at HERMES [129, 130], NIKHEF [131, 132] and Indiana [133]. It is

generally believed that in order to reduce the dwell time of an atom on the surface of the cell

(first term in equation 3.44), the cell should be coated with a layer of a Drifilm [134]. This

decreases the probability of binding an atom with the cell surface since the Drifilm layer is

chemically saturated and has no available bonds. Further increase of the cell surface binding

energy comes from accumulated water molecules (in the form of ice) on the cell surface which

originate from the dissociator (see section 3.1).

In order to reduce the second term in eqn. 3.44, the cell was cooled down to increase

the activation barrier for the interactions between the atoms on the surface. However, this

increases the dwell time of the atoms on the surface of the cell. Therefore, there is an

optimal temperature that will lower the recombination rate, typically around 100 K. The

cell temperature at BLAST is set to ∼90 K.

It is generally believed that once the atoms recombine into molecules they become com-

pletely depolarized. However, the NIKHEF ABS collaboration [131] found some evidence

that the atoms do preserve their tensor polarization even after recombining into molecules.

Also, the Indiana collaboration [133] observed that at room temperature with a sufficient

magnetic holding field (∼ 6 kG) nearly 40 % of the hydrogen atoms retain their vector po-

larization. The observation by the Indiana collaboration, however, is not applicable to the

BLAST target, since the magnetic holding field is not strong enough to reproduce this effect.
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Depolarization Due to Wall Collisions

A wall collision is a chemical interaction in which an attractive potential between the cell

surface and an atom makes that atom spend some time dwelling infinitesimally close to the

surface. As first suggested by Bouchiat and Brossel [135], an electron in the atom interacts

with any magnetic dipoles found on the cell surface and with the unpaired electrons through

both spin exchange and Pauli exclusion interactions. The depolarization then occurs through

induced transitions between different Zeeman and hyperfine levels. The probability of this

transition is characterized by its frequency. The relaxation rate of a single spin is given as

[134]

νs =
2

3

τdwell

τdwell + τbounce
g2

Sb2τc ×
1

1 + ω2
sτ

2
c

, (3.45)

where gS is the gyro-magnetic ratio, b is the local magnetic field on the cell surface, τbounce

is the time between each surface collision, ωs is the Larmor frequency of the spin and τc is

the correlation time of the modulation.

In the strong magnetic field regime the electron spin is decoupled from the nuclear spin.

Since the wall interactions affect mostly the electrons in the atom, the nuclear polarization

relaxation is weak, as observed at HERMES [136].

In the weak magnetic field regime the electron spin is coupled to the nuclear spin. What

is observed then is a 〈~S · ~I〉 relaxation. Therefore, the nuclear polarization relaxes just as

fast as the electron polarization. The time dependence of such relaxation was suggested by

Bouchiat and Brossel [135] to be of the following form

〈~S · ~I〉 = 〈~S · ~I〉0e−tνhf , (3.46)

where νhf is defined in equation 3.45 as νs with ωs becoming the frequency of a hyperfine

transition, ωhf .

The BLAST target operates in the strong magnetic field regime when the polarized

deuterium gas is in the target whereas the polarized hydrogen target is operated in the weak

magnetic field regime.
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Spin Exchange Collisions

When the atoms collide with each other there is a finite probability for them to exchange

their spins. The rate of the spin exchange collisions per unit time per unit volume is [128]

νse = n〈σsev〉, (3.47)

where n is the number of atoms per unit volume, σse is the cross section for a spin-exchange

collision and v is the velocity of an atom. Hence, there is a linear density dependence of the

relaxation rate due to the spin exchange collisions.

In a physical internal target there is no way to separate the spin relaxation due to the wall

collisions or spin exchange collisions. However, these processes are of different nature. Wall

depolarizations have a strong temperature dependence in very low or very high temperature

limits as well as a strong dependence on the quality of the cell and magnitude of the target

holding field and the cell geometry. At the same time, wall depolarization has a small density

dependence.

Spin exchange collisions, on the other hand, have an explicitly strong density dependence

and a weak temperature dependence. In a diffusive flow, the density is an inverse function

of the velocity of an atom. At the same time the spin diffusion rate due to spin exchange

has a linear velocity dependence13. When this relaxation rate is integrated over the time an

atom spends in the cell, a 1/
√

T dependence exists. Hence, the spin exchange collision rate

is relatively insensitive to the temperature of a cell.

In general, it is believed that the depolarization rate in the BLAST target is dominated

by the wall effects (recombination and cell wall depolarization). This is important for a 60

cm cell, since the atoms diffusing along this cell would at some point cross zero magnetic

field while still being in the cell. At this point they become completely depolarized. The

part of the cell where the holding field crosses zero is not used in the data analysis. However,

in the presence of a strong spin exchange rate the polarization along the whole cell would

be negatively impacted due to the depolarized atoms at the edge of the cell having a finite

probability to return back to the center and scatter off the polarized atoms. However, this

13An approximation is made here that 〈σsev〉 ≈ σse〈v〉.
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has not been observed when the performance of a 60 cm cell was compared with that of a

40 cm cell.

Cell #1 Cell #2 Cell #3
Time in the cell, τd (ms) 44.1 60 73.6

Number of wall bounces, 〈N〉 1130 2323 2829
Time between wall bounces, τbounce (µs) 39 25.8 26.0

Table 3.5: For each cell used in the experiment the time the atom spends in the cell, the
number of wall collisions and the time between wall collisions can be calculated from the
diffusion flow equations.

Tabulated in table 3.5 are the characteristic quantities14 of each cell that can be calculated

from the diffusive flow equations. Unfortunately, due to the lack of available run time, the

quantities specific to the quality of an individual cell, such as relaxation rates, were not

measured. Looking at table 3.5 it is noticed that by going from cell #1 to cell #3 the number

of wall bounces almost triples. One would thus expect an increase in the polarization loss in

the longer cell. This is especially true for the case of polarized hydrogen gas in the target,

since the magnetic holding field is too low to decouple the atomic and electric spins. However,

as it will be shown in the target’s performance discussion (section 3.6.2), cell #3 turned out

to produce the largest figure of merit. This points to the importance of the internal quality

of a cell when considering its performance.

3.5.3 Target Magnetic Holding Field

The magnetic holding field for the atoms in the target is provided by a strong electromagnet.

The requirement for the magnitude of the holding field is that it should be at least a few

times larger than the critical field, Bc. The second requirement concerns the uniformity

of the magnetic field along the target length. The atoms diffusing through the cell must

constantly experience the uniform magnetic field in order to avoid depolarization.

The polarization direction of the target is defined by the direction of its holding field.

The target magnet provides field only in the laboratory x-z plane. However, purely in-

plane target polarization direction is sufficient for the experimental program at BLAST. All

experimental asymmetries measured at BLAST have a strong dependence on the polarization

14These quantities are calculated for the deuterium target.
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direction. Therefore, for a precision measurement the target field direction has to be well

known and stable over the duration of the experiment. For this purpose, a high resolution

two-dimensional Hall probe was installed in the scattering chamber to monitor the target

holding field angle.

The holding field magnet had not been altered since it was shipped from NIKHEF [137]

(see fig. 3-24). The magnet has an open geometry with the coils placed at the top and bottom
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Figure 3-24: Holding field magnet as it was built at NIKHEF [137]. The magnet has not
been modified for BLAST. Slight adjustments were made to the mounting of the storage cell.
Also, the positions of the temperature (TC) and field (HP) probes were changed to provide
more precise readings. The cell in the picture is 40 cm long. A 60 cm long cell was used in
the experiment. The diagram is taken from the Ph.D. thesis by Zilu Zhou [119].

of the scattering chamber to allow space for the target windows on the sides. The water

cooled copper coils are wound along the electron beam direction to provide the transverse

field and perpendicular to the beam for the longitudinal field. The coils are designed so

that there is room for the inlet tube on the top and the exit tube on the bottom allowing a

sampling of the atomic beam for analysis with the Breit-Rabi Polarimeter (see section 3.5.4).

The coils are wound around two steel plates, one on top and one on the bottom. The steel

plates increase the strength of the holding field in the target region and at the same time

make the field uniform along the cell length. Both plates have a small hole in the center

for the inlet and outlet tubes. The discontinuity in the copper coils along with the holes in

the steel plates create a slight non-uniformity in the transverse magnetic field at the center

of the target (see fig. 3-25, right). Due to the influence of the transverse magnetic field on

the orbit of the stored electron beam, two correction magnets were installed upstream and

downstream of the target.
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Figure 3-25: On the left is the field vs. current measurement of longitudinal (circles) and
transverse (squares) holding field magnets. On the right is the data on longitudinal (circle)
and transverse (squares) magnetic fields with the derived target angle (triangle) along the
length of the target cell. The lines are from the TOSCA calculation.

Figure 3-25 shows a map of the target field measured before the target was installed into

the South Hall Ring. The B vs. I curve (left) shows that there is little saturation in the

transverse field magnet while the longitudinal field magnet starts to saturate around 400 A.

Also, the full field strength of the transverse magnet is close to one half of the longitudinal

magnet.

The longitudinal field is uniform around the center of the target and starts to vary more

strongly at |z| > 15 cm. The transverse field has a dip in the middle of the cell due to the

break in the magnet coils and a hole in the steel. This dip is even more pronounced when

the target polarization angle is calculated from the transverse and longitudinal fields. The

magnetic field of the target magnet is modeled with TOSCA. The calculations agree with

the data reasonably well.
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3.5.4 Breit-Rabi Polarimeter

Historically, the atomic beams entering the storage cell were analyzed with a Quadrupole

Mass Analyzer (QMA), similar to the one used in the dissociator studies described in section

3.1. However, the QMA does not function properly in the strong or even moderate ambient

magnetic field. It is also impractical to take the QMA-based analyzing device outside of the

BLAST field, since the distance from the target cell becomes so large that the signal-to-noise

ratio in the QMA precludes any precise measurements. Instead, the Breit-Rabi Polarimeter

Beam
from Cell

at
om

ic
 b

ea
m

Figure 3-26: Breit-Rabi Polarimeter. To enhance the details the figure is not drawn to scale.
The atomic beam is directed from top to bottom.

(BRP) is instrumented underneath the storage cell in a form of dipole magnet with a strong
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and uniform gradient field. A small 2 mm aperture is placed at the entrance of the magnet to

limit the acceptance of the atomic beam to the spatial resolution of three compression tubes.

The aperture improves the signal-to-noise ratio significantly. The atomic beam is deflected

in the strong gradient field of the BRP in a similar fashion to the sextupole magnets (see

section 3.2). Three compression tubes (CT) equipped with ion vacuum gauges are installed

1.5 m below the magnet to sample the deflected beams. The central CT collects both the

atomic and molecular gas with the BRP magnet off. When the BRP magnet is on the left

and right CTs are sampling the deflected atomic beams. The atomic beam polarization can

be monitored during the experiment by using the signals in the left and right CTs. By

comparing the central CT signal with the ABS sextupoles in the atomic beam to the signal

with the sextupoles moved out of the atomic beam, the atomic fraction of the beam as it

leaves the nozzle, αH/D, is measured.

Since it only samples the central trajectories of the atomic beam, the BRP set-up is not

designed to measure the absolute polarization of the target with a great certainty. Also, the

BRP is not sensitive to the polarization of the atoms stored in the cell. The polarization of

the atoms in the cell can be different from the polarization of the atomic beam injected in

the cell due to the various depolarizing mechanisms in the cell described in section 3.5.2. The

absolute polarization of the target is measured by the electron scattering reaction. However,

together with electron scattering, the BRP provides a good monitor of the relative strength

of the atomic states in the ABS.

The BRP also provides a good method to tune the RF transition units with the BLAST

field on. A static field scan is performed for all RF units to determine the location of the

hyperfine transitions needed to polarize the atomic beam (see fig. 3-27 for example).
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Figure 3-27: MFT static field scan with the SFT2-6 transition turned on for the atomic
deuterium beam. Compression tube, CT1 (left) samples hyperfine states with mS = −1

2
.

The CT2 (right) samples mS = +1
2

states. MFT 3-4, 2-4 and 1-4 transitions are clearly
discernible.

3.6 ABS Performance

3.6.1 Intensity

The ABS intensity is a strong function of the pumping speed along the path of the polarized

atoms. The atomic beam intensity is parametrized as [138]

I(Q) = I0 · Q · e−Q/Q0, (3.48)

where Q is the flow into the dissociator, I0 is the intensity in the absence of rest gas scat-

tering and Q0 is the beam attenuation parameter which is a function of the rest gas density

in the ABS chambers. The intensity I0 is a function of the ABS parameters, such as the de-

gree of dissociation, geometry of the nozzle-skimmer-collimator system, sextupole transition

probability, etc. In the case of the BLAST ABS the atomic beam attenuation is dominated

by the rest gas scattering and intra-beam scattering is negligible. When the ABS was origi-

nally assembled at BLAST the production of a high intensity atomic beam was significantly

limited by the vacuum pumping. The vacuum components were redesigned and assembled
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Figure 3-28: Attenuation of the Atomic Beam in the ABS as a function of the gas flow into
the dissociator. The measurements were performed on the two state hydrogen target in the
old ABS pumping configuration with the BLAST field on (triangles) and off (circles) and
the new pumping configuration (squares) with the BLAST field on.

into the final configuration. The intensity measurements were performed with the ABS in its

original low pumping speed and in the final high pumping speed configurations by injecting

hydrogen into the target in two state mode (see fig. 3-28). Also, the sextupole magnets

were not shielded from the BLAST magnetic field in the original configuration. In the final

set-up the sextupole magnet strength was improved and the magnets were shielded from

the BLAST field. The measurements were performed with the storage cell replaced by a

compression tube equipped with an ion vacuum gauge. The intensity was measured with the

RF transition units off15. The results of these measurements are collected in table 3.6. The

Configuration BLAST field I0 (atoms/s/sccm) Q0 (sccm) Imax (atoms/s)
Old on 4.65 ×1016 57.4 1.25 ×1016

Old off 1.03 ×1017 57.4 2.5 ×1016

New on 1.75 ×1017 73.3 5.4 ×1016

Table 3.6: ABS intensity measurements for the hydrogen gas in two state injection mode.

15In this configuration all mS = + 1

2
states are injected into the target. Correspondingly, during the

experiment, when the RF transitions are used, the hydrogen and deuterium intensities would be down by
1/2 and 1/3, respectively.
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effect of the BLAST field on the focusing in the sextupole system can be seen by comparing

the intensity, I0, with the BLAST spectrometer on and off. The difference between I0 in

the old and new configurations is due to the stronger sextupole magnets used in the new

configuration. A significant improvement in Q0 between the old and new ABS configura-

tions was achieved by improving the overall pumping speed. No significant difference was

observed between the intensity measured with the BLAST field on and off in the new ABS

configuration, due to the shielding of the sextupole magnets.

The atomic density in the storage cell was determined with the known elastic scatter-

ing reaction. The average target thickness achieved with cell #3 during the experiment

is estimated to be ≈4.5 ×1013 atoms/cm2 for both hydrogen (1 state injection) and deu-

terium (2 states). This thickness corresponds to an atomic beam intensity of ≈2.6 ×1016

atoms/s. A precise determination of the target density is not possible, since it requires an

exact knowledge of the detector efficiencies. The average intensity for hydrogen is in line

with the expected value from Imax in table 3.6, whereas for deuterium the average intensity

is somewhat lower, mainly due to the non-optimal ABS running conditions in the beginning

of the run16.

3.6.2 Polarization

As mentioned before, the target polarization is measured by means of electron scattering

reactions. The precision of the vector polarization measurement from electron scattering is

limited by the precision of the electron beam polarization measurement using the Compton

polarimeter. The precision of the deuterium tensor polarization, Pzz, measurement is limited

by the systematics of the T20 measurement.

The target polarization was monitored daily during the experiment (see figs. 3-29, 3-

30 and 3-31). With cell #3 placed in the target the vector and tensor polarizations have

remained stable over the course of the experiment. The overall polarizations quoted in this

section have been achieved with cell #3. The vector polarization in deuterium is about

10 % larger than the vector polarization of hydrogen. This is expected considering that the

16The hydrogen experiment followed a long deuterium run. The running conditions were being improved
in the course of the deuterium run. The optimal ABS running conditions were achieved by the time of the
hydrogen target running.
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Target Reaction Pz Pzz

Hydrogen 1 ~H(~e, e′p) 78 % ± 4 % -

Deuterium 2 ~H(~e, e′p)n and 2 ~H(~e, e′ 2H) 86 % ± 4 % 68 % ± 6 %

Table 3.7: Vector and tensor polarization results. The uncertainties in the vector polariza-
tion, Pz, of the hydrogen and deuterium targets are mostly determined by the systematic
uncertainty of the Compton polarimeter measurement. The tensor polarization, Pzz, uncer-
tainty is determined by the systematic uncertainties in the T20 measurement.
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Figure 3-29: Vector polarization, Pz, of the deuterium target measured each day of the
experiment with an electron scattered into the left and right sectors separately. The error
bars are purely statistical.

magnetic holding field of the target is better suited for the critical field of deuterium. In fact,

it is somewhat surprising to measure such high Pz in hydrogen considering the inadequate

magnitude of the holding field. This kind of performance with the hydrogen target could

only be explained by a cell of a very high quality.

The deuterium tensor polarization, Pzz, is about 15 % lower than the vector polarization.

This may be due to the electron depolarization in the cell having a greater effect on the

tensor polarization. An atom has to go from a state with mI = 1 to a state with mI = −1

in the same hyperfine multiplet to completely vector depolarize while it only has to go to

a state with mI = 0 for a complete tensor depolarization. However, this has not yet been

investigated in great detail.

Overall, the BLAST target performed exceptionally well. The figure-of-merit achieved
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Figure 3-30: Tensor polarization, Pzz, of the deuterium target measured each week of the
experiment with left and right sectors combined. The error bars are purely statistical.
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Figure 3-31: Vector polarization, Pz, of the hydrogen target measured each day of the
experiment with left and right sectors combined. The error bars are purely statistical.

with cell #3 is somewhat bigger than projected in the proposals. It is almost a factor of

three greater than the NIKHEF FOM with deuterium gas in the target and factor of ten

greater with the hydrogen gas.
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Chapter 4

The BLAST Experiment

4.1 The Stored Polarized Electron Beam in the South

Hall Ring

The South Hall Ring (SHR) is located at the Bates Linear Accelerator Center. Polarized

electrons extracted from the laser driven GaAs crystal are accelerated to an energy of up to

1 GeV. The acceleration is achieved by the 500 MeV linear accelerator. The 500 MeV beam

is recirculated into the linac to nearly double the energy to 1 GeV. The electron beam is

then injected into the South Hall Ring.

SHR Parameter Value
Energy Range 300-1000 MeV
Circumference 190.204 m

Revolution Frequency 1.576 MHz
Bend Radius 9.144 m

Stored Current ≥ 100 mA
Internal Duty Factor 99 %
Injection Frequency 1-1000 Hz

RF Frequency 2.856 GHz
Harmonic Number 1812

Table 4.1: SHR Design Parameters

The South Hall Ring operates either as a storage ring for the internal target experiment

(BLAST) or as a pulse stretcher ring to produce nearly CW beam for the external target

experiments. In a storage mode, currents in excess of 200 mA are achieved by means of
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Figure 4-1: South Hall Ring. The electron beam is circulating counter clockwise.

stacking beam pulses of a few mA at an injection rate of about 10 Hz [139].

A beam tune was found to accommodate the storage cell in the center of the west straight

section of the ring (see fig. 4-1). The small diameter of the storage cell requires a low β-

function of the beam in order to limit scattering from the cell walls and beam lifetime loss.

To further limit scattering of the beam from the target cell walls, a tungsten collimator with

the inner diameter slightly smaller than the diameter of the storage cell was placed at the

upstream end of the cell. The collimator also helps to protect the target cell Drifilm coating

from damage caused by the electron beam and the synchrotron radiation.

The current in the ring is measured with a zero-flux DC current transformer (LDCCT).

The LDCCT is designed for non-destructive measurements of electron beam currents. It has

a frequency response from DC to 100kHz, an absolute accuracy of 0.05%, and is routinely

calibrated. A 16 bit ADC digitizes the output and broadcasts the EPICS value in units
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of mA. This signal is digitally filtered to a final bandwidth of approximately 0.5 Hz. The

technology used is a saturatable core primary winding. A secondary winding is injected with

a known level sine signal. Pickup electronics on the primary winding measure the level of

the resultant second harmonic product. This level is related to the DC flux through the

primary core [140].

The electrons in the beam are longitudinally polarized. To prevent polarization loss due

to the electron spin precession around its momentum vector, a Siberian snake was installed

in the east straight section of the ring (see fig. 4-1). The snake flips the spin vector to the

opposite side of the momentum vector so that the g − 2 precession in the north arc of the

ring cancels the precession in the south arc.

The beam polarization is monitored by the Compton polarimeter [141]. The Compton

polarimeter exploits the spin asymmetry of the backscattered circularly polarized light. The

circularly polarized light is produced by a high intensity laser. The electron beam upstream

of the target scatters the circularly polarized laser light at a very small angle. The backscat-

tered light travels in a straight path and exits the beam pipe when the electron beam is

bent in a dipole magnet. A set of absorbers, sweep magnet and charged particle veto coun-

ters are designed to reduce charged particle and synchrotron light backgrounds. The energy

spectrum of the backscattered photons is measured by a CsI calorimeter (see fig. 4-2). The

Figure 4-2: Flight path of the backscattered light.

beam polarization is measured during BLAST data taking, thus reducing helicity-dependent
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systematic uncertainties of the experiment. The average polarization during the experiment

was measured by the Compton polarimeter to be 65 ± 4%. The uncertainty in this mea-

surement is dominated by the internal systematic uncertainties of the Compton polarimeter.
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Figure 4-3: Polarization of the stored electron beam measured each day over the 2004 BLAST
running period.

Overall, the polarized source, linac and the SHR have performed exceptionally well con-

sistently delivering high intensity and high polarization electron beam for the experiment

(see fig. 4-3). This is especially significant considering the challenges to the beam quality

from the internal target operating in the SHR. The combination of the collimator and stor-

age cell limits the conductance of the ring. The gas in the storage cell becomes ionized and

increases the emittance of the beam. The target magnetic holding field steers the electron

beam. All of these challenges were overcome by the operations group at Bates.

4.2 The BLAST Toroid Magnet

The Bates Large Acceptance Spectrometer Toroid magnet consists of eight copper conductor

coils arranged symmetrically around the beam line (see fig. 4-4). The toroidal magnetic

field generated by the coils provides curvature to the charged particle trajectories for precise

tracking and momentum determination. The coils are made of 1.5
′′

square copper hollow

conductors, with 26 turns in each coil. The operating current of a coil is 6731 A, creating a
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Figure 4-4: BLAST Toroidal Magnet

maximum field of 3.8 kG.

The magnetic field produced by the BLAST magnet was carefully mapped in the target

and detector regions [142] to provide a three-dimensional field map used in the reconstruction

of charged particle tracks. The measurements were then compared to Biot-Savart calcula-

tions with ideal coil locations. Figure 4-5 shows a scan of the vertical component of the

magnetic field along the axis perpendicular to the beam axis (x-axis) at y = 0 and z = 0.

The measurements are in relatively good agreement with the Biot-Savart calculations. The

deviations of ≤ 5% are mostly due to shifts of the coils from the ideal positions, and the

presence of magnetic materials in the field.

4.3 The BLAST Detector

The BLAST detector is designed to accommodate the geometry of the BLAST toroidal spec-

trometer magnet. The drift chambers in the left and right sectors fit between two neighboring

spectrometer coils. The entrance window of the smallest drift chamber is positioned near

the aluminum windows of the target chamber. The Čerenkov detectors are located behind

the drift chambers. The Time-of-Flight (TOF) scintillators are located behind the Čerenkov
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Figure 4-5: Vertical component of the magnetic field along along the axis perpendicular to
the beam axis (x-axis) at y = 0 and z = 0.

counters. The drift chambers, Čerenkov and TOF detectors are all mounted on a detector

subframe which can be moved out of the region of the BLAST coils for servicing, or to allow

work on the target. The neutron detectors are mounted on their own support frame a few

meters away from the target (see fig. 4-6).

All detector and drift chamber high voltage is supplied by remotely controlled high voltage

modules in a Lecroy 1458 HP mainframe. The high voltage is controlled using the EPICS

slow control system, the same system that operates the South Hall Ring. This allows for

a smooth integration of the high voltage controls with the beam injection software. The

integrated control package is named “Automatic Ring Fill Software” (ARFS). ARFS allows

for the safe, automatic injection of the electron beam into the South Hall Ring. To avoid

the damage to the detectors from the injection flash, the detector high voltages are lowered

automatically before the fill is dumped. Once the detector voltages are lowered the ring

control gets an “OK” to dump stored beam and fill the ring again. After the ring is filled,

the high voltages are raised again. The data acquisition is inhibited while the high voltages

are down. All this is done without any involvement of an operator, which improves the

efficiency of the experiment and reduces the data acquisition dead time.
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Figure 4-6: Schematic layout of the BLAST Detector without the spectrometer coils (top)
and with them (bottom).
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4.3.1 The Drift Chambers

The BLAST detector is equipped with a set of drift chambers in the left and right sectors.

Each set consists of three chambers of a compound trapezoidal shape with a common gas

volume. The shape is chosen to fit inside of the BLAST coils. The geometrical acceptance of

the three wire chambers define the acceptance of the BLAST detector. The total acceptance

is ∼512 msr per sector (see fig. 4-7).
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Figure 4-7: Electron geometrical acceptance ( φe vs. θe) of the BLAST detector in the left
sector (left) and right sector (right).

Each drift chamber consists of 2 super layers with 3 layers of sense wires in each super

layer. The sense wires are tilted at a stereo angle (±5◦) with respect to the vertical direction.

As a charged particle traverses the drift chamber gas volume (80:20 He:Isobutane), it liberates

electrons by ionization. These electrons propagate towards the sense wires in the electric

field produced by the high voltage on the field wires. In the vicinity of the sense wires an

avalanche of ionization is produced which induces a signal on the wire. The position of a

particle in the drift chamber is reconstructed from the time it takes the ionization electrons

to reach the sense wire and a known time-to-distance1 function. The sense wires in the

neighboring layers are staggered by 0.5 mm in order to resolve the left-right ambiguity, i.e.

to determine from which side of the wire the ionization electrons came from. The vertical

position reconstruction is allowed by the stereo angle of the sense wires.

1Time-to-distance function refers to the time it takes an ionization electron in the gas to travel a certain
distance. The time-to-distance relation is a function of gas mixture, magnetic field, etc.
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However, spatial coordinates (and hence scattering angles) are not sufficient for the re-

construction of most scattering reactions (they are enough for elastic scattering). The mo-

mentum reconstruction is needed as well. In a magnetic field a charged particle experiences

a ~v × ~B force. The solution of this drift equation is the curved track with a radius propor-

tional to the known magnetic field strength and the momentum of the charged particle. The

BLAST drift chambers are designed so that the track curvature measurement is determined

by three clusters of points. Each cluster measurement of a track stub has an accuracy of ε.

The intrinsic momentum resolution in the absence of multiple scattering is then

∆p

p
=

8p

0.3L0

1
∫

Bdl

√

(ε1/2)2 + (ε2/2)2 + (ε3/2)2, (4.1)

where p is the momentum of the particle, L0 is the length of the track and
∫

Bdl is the

integral of the magnetic field along the particle’s path. The accuracies ε are defined as

εi = σi√
N

, where σi is the intrinsic position resolution in the wire chambers and N is the

number of measurements.

4.3.2 Reconstruction Resolution of the Drift Chambers

The resolutions of the reconstructed variables in the drift chamber were studied with elastic

electron scattering on the hydrogen. The kinematics in the elastic scattering are determined

by only one out of four kinematic variables2 in the final state, as the beam energy and

particle masses are well known. Since all four are measured, the system of equations is

overdetermined. The momentum of the electron, pe and the angle of the proton, θp are

expressed in terms of the electron angle, θe as

pe =
E

1 + 2 E
Mp

sin2
(

θe

2

) (4.2)

θp = sin−1





1

1 + tan2
(

θe

2

) (

E
Mp

+ 1
)





1
2

, (4.3)

2The kinematic variables reconstructed by the drift chambers are φe, θe, pe, φp, θp, pp. Of them φe and
φp drop out of the kinematical relations.
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Figure 4-8: Single Event Display (nsed) of a typical e-p elastic event. In the top view (left)
the electron beam is traveling from left to right. The scattered electron is bent towards the
beam, while protons are bent away from the beam. The three hit clusters, one in each drift
chamber, are clearly visible in the top view. The coplanarity of the event is seen in the front
view (right). In the front view the beam is directed out of the page.

where E is the electron beam energy and Mp is the proton mass. The differences between

the measured and calculated pe and θp are histogrammed to study the resolution of the drift

chamber reconstruction (see fig. 4-9). The widths of these histograms are approximately

related to the resolutions of the reconstructed variables as

∆f(pe − pe(θe)) ≈ ∆pe (4.4)

(∆f(θe − θp(θe)))
2 ≈ (∆θp)

2 + (∆θe)
2 (4.5)

(∆f(φe − φp))
2 = (∆φp)

2 + (∆φe)
2 (4.6)

(∆f(ze − zp))
2 = (∆zp)

2 + (∆ze)
2, (4.7)

where the last two equations stem from the coplanarity and the single vertex in the elastic

scattering (see fig. 4-10) . The results of the resolution measurements for the electron are

compiled in table 4.23 along with the original design values [143]. The projected resolu-

tion is based on the 130 µm intrinsic wire resolution and the Monte Carlo studies of the

3The values are extracted using the approximation that the electron resolution is the same as the proton’s.
In fact the proton resolution is slightly better.
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Design Measured
∆pe 2 % 3 %
∆θe 0.3◦ 0.45◦

∆φe 0.5◦ 0.56◦

∆ze 1.0 cm 1.0 cm

Table 4.2: Resolutions of the electron kinematic quantities measured by the BLAST detector.

multiple scattering.

The resolutions in the drift chamber achieved to date are close to the design values.

Further improvements to the resolution are possible with a better understanding of the drift

chamber time-to-distance relations and constants.

4.3.3 Čerenkov Detectors

The Čerenkov detectors in BLAST are used to discriminate between the electron and π−

tracks in the drift chamber. At high pion energy the time resolution of the BLAST spec-

trometer is not good enough to separate the mass of the pion from that of the electron using

just the time-of-flight and momentum information.

There are four Čerenkov counters in each sector4. The first, most forward detector

contains 7 cm thick radiator silica aerogel with index of refraction, n=1.02. The other two

counters contain 5 cm of radiator with n=1.03. The smallest, most forward counter has six

5-inch PMTs (Photonis XP4500B). The second counter contains eight PMTs and the largest

most backward detector has twelve PMTs. The size (width×height×depth) of the largest

Čerenkov detector is 100×150×19 cm3. All Čerenkov PMTs were shielded with iron to avoid

loss of efficiency due to the BLAST magnetic field.

A relativistic charged particle emits light in a material if the velocity of this particle is

greater than the speed of light in the material. The angle of the emitted light cone is defined

as [144]

cos(θc) =
1

nβ
, (4.8)

where β is the ratio of the charged particle’s velocity to the speed of light and n is the

index of refraction of the radiator material. The number of the photoelectrons emitted by a

4The fourth Čerenkov is used in front of the Back Angle Detector scintillators (BATs) and not considered
in this work.
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Figure 4-9: Plot of momentum (top) and polar angle (bottom) resolutions measured with
elastic e-p scattering.
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the elastic e-p scattering.
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radiating particle is [145]

Np.e. ∝ Lεdetsin
2θc (4.9)

where L is the path length of the particle in the radiating material, εdet is the detection

probability and θc is defined in eqn. 4.8.

The photoelectron signal response of the BLAST Čerenkov counters was modeled using

Monte Carlo methods [146] with a Poisson event generator. The ADC spectrum of the

Čerenkov detector was obtained by summing over the events in the PMT that passed the

trigger threshold. An ADC spectrum calculated by Monte Carlo for a multiplicity of 4 PMTs

is shown in fig. 4-11. The average number of photoelectrons that trigger an event was found

to be 2.8.
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Figure 4-11: A simulated ADC event distribution of a Čerenkov counter fitted by a Poisson
distribution with µ = 2.8.

The efficiency of the Čerenkov counter for the electron detection was obtained using the

elastic electron scattering on hydrogen. The elastic electrons are identified using the drift

chamber information with a set of cuts defined by the elastic kinematics. The efficiencies

of the Čerenkov counters are plotted as a function of the TOF scintillator number (see fig.

4-12), located directly behind the Čerenkov counters. There are four TOFs per Čerenkov.

The efficiency for electron detection was found to be ∼85 % for all Čerenkov detectors. Each

Čerenkov counter shows a lower efficiency at its upstream edge, since electrons are bent in

and miss the fourth TOF.

The effect of the Čerenkov cut on the determination of Gn
E was investigated. It was

found that the Čerenkov cut has no statistically significant effect on the extracted value of
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Figure 4-12: The Čerenkov efficiency for electron detection as a function of the TOF number.
The low efficiency values at TOF #3, #7 (off scale) and #10 are due to an edge-of-acceptance
effect.

Gn
E/Gn

M . This is mostly due to the fact that there have to be two pions in the final state in

order for a π− to be detected in coincidence with a neutron. A product of the cross section

and the geometrical phase space for this type of reaction is orders of magnitude lower than

the quasielastic scattering. Therefore, the Čerenkov counter information was not used in the

final analysis.

4.3.4 Time-of-Flight Scintillators

The Time-of-Flight (TOF) scintillation detectors provide timing information for the particle

track reconstruction and identification. Although, the position information from the TOFs

is redundant to the drift chamber reconstruction, it is useful for consistency checks of the

drift chamber performance.

The time information from the TOFs is used for the particle identification at BLAST.
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At 400 MeV kinetic energy, the time separation at the TOFs between the pion and proton

is ∼6 ns. At 200 MeV, the proton reaches a TOF ∼8 ns ahead of an elastic deuteron. These

times are well above the intrinsic time resolutions (∼750 ps) of the TOFs, thus providing a

good particle identification.

The TOF wall in each sector consists of sixteen Bicron BC-408 scintillators. Each scin-

tillator is 2.5 cm thick. The front four scintillators are 120 cm tall and 15 cm wide and the

other twelve are 180 cm in length and 26 cm in width. The TOF scintillators are equipped

with 3” photo-multiplier tubes (PMT) at both ends. The geometrical acceptance of the TOF

wall matches the acceptance of the drift chambers.

The TOF scintillators are equipped with a flasher system, which consists of a laser,

splitter box and optic fibers. The laser light is split and attenuated in the splitter box and

then fed into the optic fibers which are coupled directly to the TOFs. The flasher system

provides a good consistency check of the TOF detector gain changes and timing shifts during

the experiment.

4.3.5 Neutron Detector System

Neutron Detector Geometry

The neutron detector system was optimized for measurement of the perpendicular vector

asymmetry. The target angle was set at 32◦ pointing into the beam left sector (see fig.

4-13). Hence, the three-momentum transfer vector, ~q, in perpendicular kinematics points

into the right sector. The right sector was instrumented with five neutrons walls: one OHIO

wall5 and four LADS walls6. One OHIO wall was positioned in the left sector to measure

electron-neutron coincidence events in the parallel kinematics. The vector asymmetry in the

parallel kinematic regime was used to check the consistency of the product of the beam and

target polarizations, hPz (see section 5.8.2).

Compiled in table 4.3 are the dimensions of each neutron wall. The total solid angle of the

neutron detectors is 244 msr to beam left and 366 msr to beam right. However, the average

effective detector thickness in the beam right sector is three times the effective thickness in

5Constructed by Ohio University
6Large Acceptance Detector System from PSI, most recently used at Jefferson Laboratory
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Figure 4-13: Single event display of a 2 ~H(~e, e′, n)p event in the BLAST acceptance in parallel
(left) and perpendicular (right) kinematics. The scattered electron track bends into the beam
pipe. The neutron track is a straight line between the vertex defined by the electron track
and the position of a hit in the neutron counter. The neutron detection was enhanced in the
perpendicular kinematics regime.

.

the left sector.

Time Calibration of the Neutron Detectors

The time-to-digital converter (TDC) start for the neutron counter signal is defined as the

electron’s time of flight to the TOF plus the light propagation time inside of the scintillator

and the delay time in the electronics. The stop is the sum of the neutral particle’s time of

flight, the light propagation time and the neutron detector’s electronics delays. Mathemati-

cally the start and stop times of a neutron detector TDC are defined as

tnstart = T e + T tof
sc + T tof

el

tnstop = T n + T n
sc + T n

el,
(4.10)

where T i is the physical time of flight of the particle and T i
sc is the light propagation time

in each detector. Each detector has a photo-multiplier tube at both ends of the scintillator.

The light propagation time T i
sc is different for each end of the scintillator, depending on

where the particle hits the scintillator. However, for a mean-timed TDC signal this value
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Sector Wall # of detectors orientation thickness (cm) length (cm) width (cm)
Left Ohio 8 horizontal 10 400 22.5

Right Ohio 8 horizontal 10 400 22.5
Right L20L 14 vertical 20 160 13.7
Right L20R 14 vertical 20 160 13.7
Right L15L 14 vertical 15 160 9.3
Right L15R 14 vertical 15 160 9.3

Table 4.3: Geometrical dimensions of neutron detectors in each neutron wall. Orientation
refers to the orientation of the largest dimension. Thickness refers to the width of a detector
material seen by a neutron incident perpendicular to the detector. The effective thickness is
dependent upon the angle of an incident neutron.

is constant. The difference between T i
sc at each end gives the particle’s incident position in

the detector. Therefore, the time-of-flight and the position as measured by the TDCs are

defined as

TOF n = 1
2
(TDC(0) + TDC(1)) = (T n − T e) + (T n

sc − T tof
sc ) + (T n

el − T tof
el )

POSn = 1
2
(TDC(0) − TDC(1)) = 1

2
(T n

sc(0) − T n
sc(1)),

(4.11)

where TDC(i) is the TDC value at each end of a scintillator. The momentum of a neutral

particle is calculated from the value of T n in eqn. 4.11. The only unknown in this equation

is the relative time offset due to the electronics delay, T n
el − T tof

el . Typically, these values

are different for each TOF-neutron detector combination. Two methods were used to obtain

these values.

The first method involves a flasher system with the laser light being delivered to all

TOFs and neutron detectors simultaneously. The precision of this method depends on the

synchronization of the laser splitter output slots, all optic fibers going to the detectors being

of the same length, the precise knowledge of the position of the optic fibers couplers on each

scintillator and the knowledge of the speed of light inside the detector material. Then eqn.

4.11 can be solved for T n
el with T n − T e = 0 and POSn = 0 (since an attempt was made to

put all fiber optic cables into the middle of a scintillator). However, as it turned out, the

laser flashers were not synchronous, not all fiber optic cables were of the same length and

the measured speed of light inside of the plastic scintillator material strongly deviated from

the assumed values7.

7This was especially true in the case of LADS detectors, where the speed of light varied by 10% from

137



A new method was developed by Chris Crawford [147] to find proper time offsets, T n
el

using cosmic events. This method was first used by Chris to find time offsets for all TOFs.

The knowledge of the TOF offsets allows one to find a time offset for all neutron detectors

with respect to just one TOF. The relative time of a cosmic particle passing through both

the TOF and the neutron detector can be defined as
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Figure 4-14: Neutron detector timing calibration using cosmic rays. Each peak is fitted with
a Gaussian. The timing offsets were applied to center Gaussian peaks around channel zero.
The green Gaussian corresponds to the particle traveling from a TOF to a neutron counter
and the blue Gaussian corresponds to a Neutron counter to TOF path.

TDCtof − TDCn =











T n
sc − T tof

sc + T n
el − T tof

el − 1000 + TOFcosmic , TOF → Neutron

T n
sc − T tof

sc + T n
el − T tof

el − 1000 − TOFcosmic , Neutron → TOF
,

(4.12)

where TDCi is the mean-time average of the TDC values at two ends of a scintillator, as

defined in eqn. 4.11, TOFcosmic is the time it takes a cosmic particle to travel between a

neutron detector and a TOF, and 1000 is an arbitrary location of a TOF’s self-timing peak

detector to detector and deviated up to 30% from the expected values.
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(see section 4.4). Since the travel time of a cosmic particle from a TOF to a Neutron counter

equals the travel time between a Neutron counter and a TOF, a histogram of eqn. 4.12

should be ideally centered around zero. If it is not, then the amount it takes to center the

spectrum around zero corresponds to the time offset for this particular neutron detector (see

fig. 4-14).

The above procedure is used to determine the sum of two time offsets at each end of a

detector. In order to determine the individual offsets, the position spectrum defined in eqn.

4.11 was used with the same cosmic data (see fig. 4-15). The center of the position spectrum

provides the second equation needed to solve for the individual time offsets. Since the whole

length of a neutron detector is illuminated equally by the cosmic rays, the cosmic events

provide a good reconstruction of the physical detector length. The comparison between the

reconstructed size and the actual size of a detector gives a good determination of the velocity

of light in the scintillator.

Since the cosmic data were collected only intermittently during the experiment, the

flasher timing information was used to monitor run-to-run timing changes.
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Figure 4-15: The Reconstructed position of cosmic events inside of a typical LADS detector
(left) and typical OHIO detector (right). In this picture a uniform speed of light inside of a
scintillator was assumed to be Vcs = 14.7 cm/ns. This value reconstructs the length of the
OHIO wall very well, whereas it overestimates the length of a LADS detector by 25%. The
speed of light was adjusted individually for each neutron detector.
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Neutron TDC Calibration

The linearity of each TDC channel was verified to a sub-nanosecond level by introducing a

known amount of time delay. The deviation of the slope from the assumed slope of 50 psec
count

was at most 2 psec
count

in some channels. Since individual neutron PMT signals are digitized

in the leading-edge discriminators, a significant pulse height dependence of the TDC value

was observed. This is due to a time-walk effect, where larger signals trigger a leading-edge

discriminator a few nano-seconds sooner than the smaller signals. To correct all TDC spectra

for this effect, a set of timing measurements was made using a signal from the laser flasher

with variable attenuation (see fig.4-16). A fit to the TDC vs. ADC curve was made using

the following form,

TDCi =
pi

0
√

ADC i − ADC i
ped − pi

1

, (4.13)

where ADC i
ped is the pedestal value for an individual ADC, and pi

0 and pi
1 are the fit pa-

rameters determined for the individual TDC channels. The stability of the ADC pedestals

was closely monitored during the experiment to reduce errors in calculating the walk effect.

4.4 The BLAST Trigger

The detector signals are routed from the experimental hall into a radiation-safe tunnel,

where the readout electronics are located. Each PMT signal is split in to two signals by

a splitter-delay module8. The delayed output of the splitter goes directly to a FASTBUS

ADC (Lecroy 1881 M) module for an integrated charge measurement. The prompt output

of the splitter is fed to a discriminator module (Lecroy 3412 constant fraction discriminator

for TOFs, Lecroy 3420 leading edge discriminators for Čerenkov and in-house built leading

edge discriminator for all Neutron counters). The output of the discriminator module is

split into multiple signals. One discriminator output goes to the VME scaler modules for

counting rate measurements in real time. The second output of the discriminator module

is delayed and used for the individual TDC “stops”. The third discriminator output of an

individual PMT is ANDed with the discriminated signal from the PMT at the opposite end of

8The outputs of the Čerenkov PMTs are added together before the splitter-delay box.
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Figure 4-16: Time-walk correction for one of the neutron counters. In red is the region in
which the fit of eqn. 4.13 is performed. The peak close to zero ADC channel is the analytical
continuation of eqn. 4.13. This type of fit was done for all neutron detector PMTs.

a scintillator. The AND from each detector is ORed together with the rest of the scintillators

in the detector subpart9 (TOFs, Neutron Counters, etc.). The ORs are then fed into the

programmable sector logic unit (MLU), which is capable of building up to 216 different logic

combinations from its 16 inputs. The outputs of the sector MLUs are connected into the

cross sector MLU (XMLU) unit. The XMLU is programmed for various left-right sector

trigger combinations constituting a first level trigger.

The majority of all events that pass the first level trigger requirement leave no track in the

drift chambers. These events are most likely from the electromagnetic showers originating in

the collimator at the upstream end of the target cell. A second level trigger was instrumented

to reduce the count rate due to the trackless events. The second level trigger constitutes an

AND of at least one wire hit in each of the three wire chambers. Table 4.4 describes the

definitions of all trigger types used during the experiment. The hierarchy of the triggers in

table 4.4 is top to bottom. For example, if an event satisfies both trigger types #1 and #7,

the event is assigned to trigger #1 and so on. The trigger rates are lowered by a factor of

9In case of TOFs only 5 through 16 are ORed. TOFs 1 through 4 are used as individual detector subparts.
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20 with the addition of the second level trigger. The total second level trigger rate is ∼200

Hz. The trigger rate is dominated by trigger #7 (inclusive electron scattering). The overall

dead time is ∼15 %.

Trigger minimal definition prescale 1st/2nd level rates

# 1 TOFl & TOFr 1 ∼32/2 (Hz)
# 2 (TOFl & !TOFr & NCr)‖(TOFr & !TOFl & NCl) 1 ∼1100/66 (Hz)
# 3 (TOFl & TOFl & CCl)‖(TOFr & TOFr & CCr) 10 ∼87/5 (Hz)
# 4 (TOFl & TOFl)‖(TOFr & TOFr) 100 ∼235/14 (Hz)
# 5 (TOFl & BATr & CCbat)‖(TOFr & BATl & CCbat) 1 ∼16/1 (Hz)
# 6 (TOF(12-15)l)‖(TOF(12-15)r) 1000 ∼760/46 (Hz)
# 7 (TOF(0-11)l & CCl)‖TOF(0-11)r & CCr) 3 ∼3200/192 (Hz)
# 8 Flasher 1 1/na (Hz)

Table 4.4: BLAST trigger definitions in XMLU and rates after the prescaling. Minimal
definition is defined as a minimum requirement needed for an event to be defined as a
particular trigger type. TOF: TOF detector, NC: Neutron counters (Ohio walls or LADS),
CC: Čerenkov detector, BAT: Backward Angle Detectors, “l” and “r” subscripts refer to
the left and right sectors in BLAST, respectively and “bat” subscript refers to the special
Čerenkov instrumented in front of the Backward Angle Detectors.

All scintillator TDCs operate in a common start mode where the start is defined by the

trigger out of the XMLU, with the start time given by the earliest TOF mean time. In a

typical BLAST coincidence event, the scattered electron triggers the TOF scintillator before

a hadron triggers a TOF or a Neutron Counter in the opposite sector. In this way, the timing

signal from the electron always shows up as a sharp self-timing peak in the TDC spectrum.

The hadron timing is measured in relation to the electron self-timing peak. This is done to

give a stable reference time for the drift chambers.

A copy of the phototube TDC start signal is delayed to provide a common stop to the

drift chamber TDCs which work in common-stop mode.

4.5 Charge Particle Veto

As mentioned before, a neutron event (trigger #2 in table 4.4) is defined as a hit in a Neutron

counter and necessarily no hit in the TOF scintillator in the same sector. Typically, the ex-

periments of this kind rely on a thin scintillator as a veto for charged particle [113]. However,

even the most efficient thin scintillators are not 100% efficient. Since the 2 ~H(~e, e p)n rate is
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Figure 4-17: BLAST first level trigger logic diagram
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an order of magnitude larger than the 2 ~H(~e, e n)p rate10, even a small veto inefficiency can

result in a sizable proton contamination. The proton background has a negative asymmetry.

Thus, its contribution would dilute the positive neutron asymmetry.

The advantage of the BLAST detector is that all of its acceptance is covered by the large

gas volume of the drift chambers. A charged particle ionizes the gas with close to 100 %

probability. The ionization electrons in the gas are collected by an average of 18 wires. The

probability of a single wire to produce a signal is better than 98 %. Thus, the probability of

at least one wire hit when a proton passes through the drift chambers is better than 99.9%.

By adding the drift chamber information into the neutron event identification, the charged

particle veto efficiency is greatly improved. A possible background due to misidentified

protons is investigated in section 5.6.2.

4.6 BLAST Monte-Carlo

The BLAST experiment was simulated with a GEANT Monte Carlo code, BLASTMC.

BLASTMC uses an event generator, DGEN, based on H. Arenhövel’s electro-disintegration

formalism [79]. The electro-disintegration events were evenly generated in a five dimensional

phase space of variables, φe, φcms, θcms, ω and θe. The sixth variable in which the events

10This ratio is even larger when the neutron detection efficiency is factored in.
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were simulated is the reaction vertex along the target cell. The vertex was generated with

a triangular distribution function, following the target density distribution function. A map

of the target holding field was used to calculate the target polarization angle at each vertex.

The generated events were then propagated through the BLAST acceptance simulated with

a GEANT software package. All detector hits and deposited energies were recorded into

the event list. The event list was then sorted according to hit pattern, i.e. single electron

hits, electron-proton coincidence, electron-neutron coincidence, etc. For each event a spin

dependent cross section (see eqn. 2.72) was assigned as a weight. This cross section has an

explicit dependence on φe and φcms (eqns. 2.75-2.79). The dependence of the cross section on

the other three variables is hidden in the structure functions, fµµ. These structure functions

were calculated by Arenhövel on a grid of variables θcms, ω and θe relevant to the BLAST

acceptance (see fig. 4-19).

For each point on the ω-θe plane a calculation of the structure function was done over

the full range of θcms, 0◦ < θcms < 180◦. The structure functions were determined for an

event at an arbitrary (θcms, ω, θe) point in the acceptance by interpolating the calculations

on the grid using a cubic spline.
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Figure 4-19: Plot of the BLAST kinematic acceptance with points at which Arenhövel’s
deuterium electro-disintegration calculation are available. A calculation grid in the ω-θe

plane (left) is regularized. Calculations, however, are done in the center of mass phase-space
(right) where the grid is not as regular.
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The momenta and angles of an electron, proton and neutron registered in the event list

were convoluted with Gaussian functions whose widths match the realistic detector resolu-

tions. All other kinematic quantities were then re-calculated from the convoluted quantities

in the event list, similarly to how it is done with the reconstruction in the physical experi-

ment.

The BLASTMC code uses GEANT to simulate the BLAST neutron detection volume.

The neutron detection in GEANT is calculated from the neutron-proton elastic scattering

in plastic detector material. The n-p elastic cross sections, which are related to the neutron

detection efficiencies, are contained in the FLUKA component of the GEANT software. The

neutron detection efficiency in GEANT is estimated on the average to be ∼1 % per 1 cm of

material.

The electron-neutron coincidence rate is proportional to the luminosity of the experiment,

the average cross section in a particular kinematic bin, and the size of the phase space of

this bin. The calculated coincidence rate can thus be expressed as

R = L × 〈σj〉 × Ωj, (4.14)

where L is the luminosity, 〈σj〉 is an average cross section in the jth bin and Ωj is the

acceptance of this bin11. The average cross section can be calculated using Monte Carlo

methods from a large ensemble of σi inside of a bin [148] as

〈σj〉 =

∑Nj

i σi
j

Nj

, (4.15)

where Nj is the number of events in an individual bin. Here, the Monte Carlo integral is done

over an ensemble of cross section values for events that have passed through the GEANT

model of the BLAST acceptance and were registered as a hit. The advantage of this is

that the very complicated BLAST acceptance as well as the neutron detection efficiency are

folded into the average cross section calculation.

Since a “white” generator is used, the density of generated events is constant over the

11The bin acceptance is not purely geometrical, but also includes the physical BLAST acceptance.
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whole generator phase space. This results in a very useful relation,

Ωj

Ωtot
=

Nj

Ntot
, (4.16)

where Ωtot and Ntot are the total volume and number of events generated respectively. All

BLASTMC calculations in this work have been made with a white generator where, Ntot =

10 million events were generated in a five dimensional volume, Ωtot = 0.245 GeV×sr2. Using

this equality, eqn. 4.14 becomes

R = L ×
∑Nj

i σi
j

Ntot
× Ωtot. (4.17)

Equation 4.17 helps to estimate the total rate from the electro-disintegration of deuterium in

BLAST as a function of kinematic quantities (Q2, pm, etc.) without analytically knowing the

detector acceptance. However, the rate estimation is subject to relatively poor knowledge

of the luminosity. Also, the GEANT model with an ideal detection efficiency is only an

approximation to the physical BLAST detector.

The polarization observables measured at BLAST are independent of the precise knowl-

edge of the luminosity or (to the first order) efficiency of the detector. The acceptance

averaged, spin dependent asymmetries are expressed in terms of the coincidence rate in eqn.

4.17 as

A =
R(+) −R(−)

R(+) + R(−)
=

∑Nj(+)
i σi

j(+) −∑Nj(−)
i σi

j(−)
∑Ntot

j

i σi
j

, (4.18)

where N tot
j = Nj(+) + Nj(−).

Suppose now that the efficiency of the BLAST detector is overestimated in GEANT by a

small amount, ε. Then the number of events in the BLASTMC in each bin is N ′ = (1+ ε)N ,

where N is the correct number of events. Since the efficiency is not dependent on the target

spin or beam helicity, the eqn. 4.18 is rewritten as

A′ =

∑(1+ε)Nj(+)
i σi

j(+) −∑(1+ε)Nj(−)
i σi

j(−)
∑(1+ε)N tot

j

i σi
j

=
A + A(ε)F (ε)

1 + F (ε)
,

F (ε) =

∑εNtot
j

i σi
j

∑Ntot
j

i σi
j

,

(4.19)
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where A(ε) is the asymmetry from the overestimated events. If the geometrical acceptance

of the GEANT model is close to the physical acceptance, it is safe to say that A = A(ε).

This means that A′ = A and the efficiency of the detector cancels out in the spin asymmetry

calculation. It is important, however, to simulate the geometrical acceptance of the BLAST

detector in the GEANT model correctly.
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Chapter 5

Data Analysis

5.1 Overview of the Experiment

This work is based on 1200 hours of polarized electron beam scattering from the polarized

deuterium target in the South Hall Ring. The time averaged stored current in the ring in

which the data acquisition was alive was 95 mA. The total accumulated charge was 420 kC,

40 kC of which were taken with cell #2; the rest were taken with cell #3. The maximum

injected current increased over the course of the experiment from ∼100 mA to ∼140 mA

with an average beam lifetime of ∼20 min. The target cell temperature was kept constant

at ∼90 K. The polarized deuterium gas flow was ∼2.5 ×1016 atoms/s corresponding to a

target density of ∼4.5 ×1013 atoms/cm2. Some amount of time was allocated to collect data

on the empty and unpolarized gas targets to estimate background rates, false asymmetries

and various other experimental systematics.

The data were taken on both vector and tensor polarized targets. Vector plus and minus

and tensor minus (vector zero) polarized atomic beams were injected an average 1/3 of the

total run time (∼400 hours) each. The measurement of the cross section in one target

polarization state continuously for the prolonged period of time would introduce systematic

uncertainties in the asymmetry stemming from slow variations in the running conditions

(beam, target, detector, etc.). To reduce these systematic errors the target polarization

state was changed every 5 min. A sequencer program randomly selected a state from a set

of three polarization states to be injected into the target. The detector’s data acquisition
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start date 05/26/04
finish date 10/15/04
total charge 420 kC

run time 1228 hours
beam energy, Ee 0.850 GeV

average beam current, 〈Ie〉 95 mA
average beam polarization, 〈Pe〉 ≈ 65%

average beam lifetime, 〈τe〉 ≈ 20 min
target angle, θD 32◦

atomic beam flow, I0 2.6 × 1016 atoms/sec
cell temperature, Tcell ≈ 90 K

target density, ρtot 4.5 × 1013 atoms/cm2

target vector polarization, Pz ≈ 80%
electron geometrical acceptance per sector, Ωexp

e 461 msr
neutron geometrical acceptance (right sector), Ωexp

n 366 msr
neutron efficiency, εn ∼0.3
electronics dead time ∼15%
total luminosity, Ltot 1.32 × 1038 cm−2

average 2 ~H(~e, e′n) coincidence rate, 〈Rn〉 0.1 Hz

Table 5.1: Summary of the experimental parameters. See text for details.

system was inhibited during the target polarization flip. The beam helicity was reversed at

the source before each ring fill.

Both beam and target helicity information were digitized on an event-per-event basis in

an ADC used as a bit register. Figure 5-1 shows the target polarization states as a function

of time reconstructed from the bit register ADC.

The beam helicity and the target polarization state information were registered in an

input register and read out with the scalers every second. The beam current in the ring

was measured by the LDCCT. An output of the LDCCT was sent to a voltage-to-frequency

converter and those pulses were sent to two scaler channels. One channel was ungated and

the other was inhibited by “experiment busy” signal which is the combination of “run not

in progress”, “front end modules busy”, “HV not all in good state” and “target no defined”

signals. The inhibited current in the scalers was integrated to determine the accumulated

charge for each beam and target helicity combination (6 in all). Both LDCCT and scalers

were carefully calibrated. The calibrations were periodically checked over the course of the

experiment.
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Figure 5-1: Target polarization states as a function of time. The polarization state was
changed every 5 min. The tensor polarization (black +) has a value of -2 when the vector
polarization (red x) has a value of 0. When a vector state of +1 or -1 is injected, the tensor
polarization is 1. Breaks in the data correspond to periods of time when the DAQ was
inhibited due to beam injection, detector voltage trips, etc.

5.2 Identification of the 2 ~H(~e, e′n)p events

Since the same event identification procedure was applied to the data in each Q2 bin, it is

sufficient to discuss the 2 ~H(~e, e′n)p event identification in the “super bin”, where all data

are combined into one Q2 bin.

The 2 ~H(~e, e′n)p event identification starts with particle identification in each sector. The

electron is easily identifiable as a relativistic particle creating an in-bending track in the

drift chambers. The neutron is identified as a slow particle which fires a neutron bar, and

leaves no wire hits in the drift chambers and deposits no energy in the thin plastic trigger

scintillator (TOF). After the coincidence particles are identified, additional kinematic and

data quality cuts are applied to the data. Below is the summary of the most significant cuts

used.
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5.2.1 Vertex cuts

The vertex of an individual event is determined from the reconstruction of the electron track.

The purpose of a vertex cut is to ensure that the event comes from scattering on the gas in

the target. The majority of the background rate in trigger #2 comes from electromagnetic

showers. The primary source of these showers is the collimator upstream of the target. The

vertex cut is an effective way to remove shower events produced at the collimator from the

data sample.

The target cell is 60 cm long and has a triangular density profile. However, due to the

length limitation of the target holding field magnet, the cut has to be made tighter, at ±20

cm to avoid unpolarized background from the atoms in the zero holding field region.

The discussion of the data in the rest of this chapter assumes that the vertex cut has

been applied.

5.2.2 Neutron-photon separation

There are two kinds of neutral particles detected by the neutron counters that leave no hits

in the drift chambers and no deposited energy in the TOFs at BLAST. One is a neutron

and the other is a high energy photon. Either particle in coincidence with an electron would

produce trigger #2. The photons at BLAST have two major sources. One is the decay of

π0 produced by the inelastic electron scattering. The lifetime of the π0 is ∼10−4 ns, which

means that the two gammas are produced immediately at the scattering vertex. The second

source is an electromagnetic shower produced by the beam hitting the target cell holder.

Since the reconstruction of the x and y coordinates of the vertex is limited at BLAST, the

reconstructed electron from the shower appears to originate in the cell.

The gammas are relativistic particles, whereas the neutrons are much slower. Based

on the relative velocities, a time-of-flight separation of the neutrons from fast gammas is

possible. Figure 5-2 (left) shows the time spectrum produced by a neutral track in the right

sector, less the time it would take a relativistic particle to reach the neutron detector.

The peak at zero represents a neutral particle traveling with the speed of light (gamma).

The neutron reaches the detector 20 ns later, indicated by the position of the second peak.

Since no other cuts have been applied so far, the source of the neutrons can be quasielastic
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Figure 5-2: Plotted in the left panel is the time-of-flight spectrum of a neutral particle in
which zero is the time at which photons reach the detector. The vertical line is a rough
cut applied to separate neutron from gamma particles. Plotted in the right panel is the
invariant mass of the final state defined in eqn. 2.69. The white spectrum represents all
events and the shaded spectrum represents the gamma events. The quasielastic, inelastic
and electromagnetic shower regions are identified.

scattering from the target gas and the target material, π+ or π0 production from deuterium,

or random coincidences. A cut is applied at ∼7.5 nsec to separate slower neutrons from the

relativistic gammas.

Figure 5-2 (right) shows the invariant mass of the final system, as defined in eqn. 2.69.

The white spectrum represents all events. The shaded spectrum is what is left from the

white spectrum after the gamma events are selected. The high energy photon events are

mostly in the inelastic and electromagnetic shower kinematic regions. The neutron time-of-

flight cut would remove these inelastic and shower events from the data sample. However,

the comparison of two spectra shows that not all non-quasielastic events are removed with

the neutron time-of-flight cut, meaning that at least half of all non-quasielastic events are

underneath the neutron time peak. This is not unexpected. Other cuts are applied to further

clean up the data.
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5.2.3 Electron Quasielastic Cut

In the quasi-free scattering approximation, an electron elastically scatters from the neu-

tron inside of the deuteron, while the proton is a spectator in the reaction. The quasi-free

approximation is kinematically defined as

√

(ω + Mn)2 − ~q2 − Mn = 0, (5.1)

where, ω and ~q are the energy and the three-momentum of the virtual photon respectively,

and Mn is the mass of the neutron. Any deviation from this equality is due to the nu-

cleon Fermi motion in the deuteron nucleus. Since quasielastic scattering dominates the

total differential cross section, the histogram of eqn. 5.1 is expected to have a pronounced

quasielastic peak.

Figure 5-3 is a histogram of equation 5.1 after the neutron time-of-flight cut is applied.

The peak around zero corresponds to quasielastic scattering. The width of this peak is

determined by the Fermi motion inside of the deuteron (∼75 MeV/c) convoluted with the

electron momentum resolution (∼23 MeV/c).

A cut is applied around the quasielastic peak in fig. 5-3 to separate the pure quasielastic

events from the inelastic and electromagnetic shower background.

5.2.4 Missing Mass Cut

The energy and momentum of the undetected recoil system are defined in equation 2.64. In

a pure electro-disintegration reaction the undetected recoil system is in its ground state, i.e.

the mass of the recoil system has an on-shell definition,

M2
m = E2

m − p2
m (5.2)

In the case of deuteron break-up with a neutron detected in the final state, the mass

of a recoil system is expected to be equal to the mass of the proton. In the ideal detector

case, histogramming the difference of the calculated missing mass and the mass of the proton

would produce a delta function.
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Figure 5-3: Histogram of the quasi-free neutron knock-out kinematics after the neutron
time-of-flight cut. The vertical lines represent the cut around the quasielastic peak. This
cut provides good background rejection from inelastic and shower events.

Thus, the advantage of the missing mass cut is that the width of the Mm −Mp spectrum

is determined purely by a convolution of the electron and the neutron momentum resolutions

and not by the kinematics of the reaction1. The full width at half maximum (FWHM) of

the peak in figure 5-4 is ∼60 MeV/c2.

The cuts are applied to the data in each run to determine 2 ~H(~e, e′n)p yields per run. As

expected, the yields have a Gaussian distribution (see fig. 5-5 (right)). The arbitrary cut of

3 × σ is used to throw out those runs with extremely high or low yields (marked with red

markers in fig. 5-5 (left)).

1Actually, there is a slight spreading due to radiative processes.

155



 / ndf 2χ  0.00142 / 31

Constant  0.04529± 0.0246 

Mean      0.0504± -0.000186 

Sigma     0.05467± 0.03031 

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
0

0.005

0.01

0.015

0.02

0.025

 / ndf 2χ  0.00142 / 31

Constant  0.04529± 0.0246 

Mean      0.0504± -0.000186 

Sigma     0.05467± 0.03031 

)
2

 (GeV/cp-MmM

co
u

n
ts

/C

Figure 5-4: Missing mass spectrum of quasielastic events. Both neutron time-of-flight and
quasielastic cuts have been applied. Vertical lines represent the cut used to isolate two body
break-up events.

5.3 Q2 Bin Selection

The decision on binning the data in Q2 is based on a desire to isolate Q2 regions of interest

while having enough statistics in each bin to make a statistically significant measurement.

The first point represents the best possible measurement at the lowest Q2 allowed by the

BLAST acceptance. Four other data points are selected to optimally measure Gn
E in a region

where the maximum of the neutron electric form factor is observed.

Five Q2 bins are chosen to be < Q2 > = 0.14, 0.20, 0.29, 0.38 and 0.50 (GeV/c)2. Higher

momentum transfer data are also available, but their analysis is outside of the scope of this

work.

Table 5.2 lists the number of 2 ~H(~e, e′n)p events in each momentum transfer bin after

the cuts are applied. The neutrons are contained equally in all six beam and target spin

combinations. However, only four of these combinations contribute to the vector asymmetry.

156



8000 8500 9000 95001000010500110001150012000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Run #

Y
ie

ld
 (

co
u

n
ts

/C
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

100

120

140

160

180

200

Yield (counts/C)

Figure 5-5: Neutron yields per run (left) and a histogram of yields (right). The mean neutron
yield is 1.05 ± 0.11 counts/C. A 3 × σ yield cut is applied to each run. In red are the yields
that do not pass this cut. These runs are thrown out.

Therefore, only 2/3 of the events listed in table 5.2 are used in the Gn
E analysis.

5.4 Reconstructed Kinematic Variables

Figures 5-6 through 5-11 show a set of reconstructed kinematic variables compared to the

BLASTMC predictions. The data are normalized to the total charge in the six spin state

combinations. The BLASTMC curves are arbitrarily normalized to the data. Some kinematic

correction had to be applied to the reconstructed data to achieve good agreement with the

BLASTMC shapes. The source of these corrections is currently being investigated. The

BLAST acceptance in the azimuthal angle of the electron, φe, is narrower than predicted by

the BLASTMC. This is primarily due to the inefficiency of the wire chambers at the edge

of the φ-acceptance. However, this inefficiency has no effect on the final result, since all

inefficiencies drop out in the asymmetry to first order.

The missing mass peak in figs. 5-7, 5-9 and 5-11 is wider than the BLASTMC indicates.

In fact the difference in the width grows as a function of Q2. This difference is attributed to
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cut 〈Q2〉 = 0.14 (GeV/c)2 〈Q2〉 = 0.20 (GeV/c)2 〈Q2〉 = 0.29 (GeV/c)2 〈Q2〉 = 0.38 (GeV/c)2 〈Q2〉 = 0.50 (GeV/c)2

-20cm < z < 20cm 818126 587193 333864 133472 109188
quasielastic 191215 123050 50758 24657 14875

missing mass 136206 94342 40144 18727 8096
neutron angle 115137 88435 39126 18478 7990

Table 5.2: Number of (e,e’n) events remaining for each Q2 bin after cuts. The first cut on
the vertex is explained in section 5.2.1, the quasielastic cut in section 5.2.3 and the missing
mass cut in section 5.2.4. The cut on neutron angle is necessary to remove events from a
part of a neutron detector which is not covered by veto counters.

the radiative effects that at this moment are not accounted for in the BLASTMC. However,

as will be shown, this is a small source of systematic uncertainty.

5.5 Raw Experimental Asymmetry

In the experimental asymmetry determination the number of neutrons is measured per unit

charge for each of six combinations of beam and target polarizations. A yield column vector,

n(h, Pz, Pzz) has the following components

n(h, Pz, Pzz) =



































n(1, 1, 1)

n(1,−1, 1)

n(1, 0,−2)

n(−1, 1, 1)

n(−1,−1, 1)

n(−1, 0,−2)



































. (5.3)

All five asymmetries defined in eqns. 2.75-2.79 can be represented as linearly independent

combinations of six yields in equation 5.3. In matrix form these asymmetries are expressed

as
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Figure 5-6: Reconstructed kinematic variables in the Q2 = 0.14 (GeV/c)2 bin from the
data (filled histogram) and from the BLASTMC (black dots). In the top left panel is the
reconstructed Q2. The top right panel shows the reconstructed energy of the virtual photon,
ω. The lower left panel shows an azimuthal angle of the scattered electron, φe. In the lower
right panel is the reconstructed polar angle of the detected neutron, θn.
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Figure 5-7: Reconstructed missing variables in the Q2 = 0.14 (GeV/c)2 bin from the data
(filled histogram) and from the BLASTMC (black dots). In the top left panel is the re-
constructed missing mass. The top right panel shows the component of the reconstructed
missing momentum parallel to the momentum transfer vector, ppar

m . The bottom left panel
shows the component of the reconstructed missing momentum perpendicular to the momen-
tum transfer vector, pperp

m . The bottom right panel shows the component of the reconstructed
missing momentum pointing out of the scattering plane, poop

m .
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Figure 5-8: Reconstructed kinematic variables in the Q2 = 0.20 (GeV/c)2 bin from the
data (filled histogram) and from the BLASTMC (black dots). In the top left panel is the
reconstructed Q2. The top right panel shows the reconstructed energy of the virtual photon,
ω. The lower left panel shows an azimuthal angle of the scattered electron, φe. In the lower
right panel is the reconstructed polar angle of the detected neutron, θn.
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Figure 5-9: Reconstructed missing variables in the Q2 = 0.20 (GeV/c)2 bin from the data
(filled histogram) and from the BLASTMC (black dots). In the top left panel is the re-
constructed missing mass. The top right panel shows the component of the reconstructed
missing momentum parallel to the momentum transfer vector, ppar

m . The bottom left panel
shows the component of the reconstructed missing momentum perpendicular to the momen-
tum transfer vector, pperp

m . The bottom right panel shows the component of the reconstructed
missing momentum pointing out of the scattering plane, poop

m .
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Figure 5-10: The reconstructed kinematic variables in the Q2 = 0.29 (GeV/c)2 bin from the
data (filled histogram) and from the BLASTMC (black dots). In the top left panel is the
reconstructed Q2. The top right panel shows the reconstructed energy of the virtual photon,
ω. The lower left panel shows an azimuthal angle of the scattered electron,φe. In the lower
right panel is the reconstructed polar angle of the detected neutron, θn.
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Figure 5-11: Reconstructed missing variables in the Q2 = 0.29 (GeV/c)2 bin from the data
(filled histogram) and from the BLASTMC (black dots). In the top left panel is the re-
constructed missing mass. The top right panel shows the component of the reconstructed
missing momentum parallel to the momentum transfer vector, ppar

m . The bottom left panel
shows the component of the reconstructed missing momentum perpendicular to the momen-
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(5.4)

where ntot is the total number of events in all helicity states.

The polarization observable used to extract Gn
E is AV

ed in perpendicular kinematics, cor-

responding to the electron being scattered into the left sector of the BLAST detector. From

eqn. 5.4, AV,exp
ed is explicitly written as2

AV,exp
ed =

1

hPz

√

3

2

(

n(1, 1) + n(−1,−1) − n(1,−1) − n(−1, 1)

ntot

)

(5.5)

Figure 5-12 shows the raw asymmetry plots, AV,exp
ed , where the electron is detected in the

left sector for each Q2 kinematics bin.

5.6 Background Corrected Asymmetry

The raw asymmetries in fig. 5-12 are subject to small corrections due to the unpolarized

and possibly polarized backgrounds. The possibilities of such backgrounds and their size are

investigated in this section.

5.6.1 Unpolarized Background from the Target Cell

The unpolarized background mostly comes from the electron beam scattering from the

walls of the storage cell. The resulting reaction is the quasielastic scattering on aluminum,

27Al(e, e′n)26Al. This reaction is in many ways similar to the 2H(e, e′n)p reaction. The

only difference is that the Fermi momentum is higher in aluminum than in deuterium. The

2The Pzz = 1 is dropped from all n(h, Pz, 1) yields in this equation.
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Figure 5-12: Plot of the beam-target vector asymmetry, AV
ed not corrected for the unpolarized

or polarized background in the Q2 = 0.14 (top left), 0.20 (top right) and 0.29 (bottom)
(GeV/c)2 bins, respectively as a function of missing momentum, pm. The dashed curve is
the BLASTMC calculation with the Galster form factor for Gn

E.
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background from quasielastic scattering on the aluminum cell is unpolarized since the cell

itself is not polarized.
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Figure 5-13: In the left panel is the yield from the cell wall scattering (shaded curve) com-
pared to the yield of real quasielastic scattering from deuterium (clear curve). In the right
panel is the ratio of the yields plotted as a function of missing momentum.

In the presence of the unpolarized background, the vector asymmetry, AV,exp
ed in eqn. 5.5

is rewritten as

AV,back
ed =

1

hPz

√

3

2

(

n(1, 1) + n(−1,−1) − n(1,−1) − n(−1, 1)

ntot + ncell

)

, (5.6)

where ncell is the rate from the empty target. ncell was measured during dedicated empty

target running. The background-uncorrected asymmetry, AV,back
ed in eqn. 5.6 is related to the

true experimental asymmetry, AV,exp
ed by

AV,exp
ed = AV,back

ed

(

1 + f cell
)

, (5.7)

where f cell is the ratio of the cell wall quasielastic events to the deuterium quasielastic events

f cell = ncell/ntot. (5.8)
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Figure 5-13 shows the function f cell measured with the empty cell. The data from all

Q2 bins are combined in this measurement to improve statistics. It is assumed that the

background conditions do not vary strongly as a function of the momentum transfer, since the

quasielastic scattering on aluminum cross section has the same Q2 dependence as scattering

on the deuteron. The maximum of f cell function in the pm region of interest is on the order

of 4 %.

5.6.2 Polarized Background

A possible source of polarized background is from 2 ~H(~e, e′p)n events misidentified as 2 ~H(~e, e′n)p

events. Since the electron-proton coincidence rate is an order of magnitude higher than the

electron-neutron rate, a small charged particle veto inefficiency can be a significant contribu-

tor to the polarized background. This contribution becomes even more significant consider-

ing that the 2 ~H(~e, e′p)n asymmetry is on the average three times larger than the 2 ~H(~e, e′n)p

asymmetry and has the opposite sign.

The proton veto inefficiency can be investigated using elastic electron-proton scattering

on the polarized hydrogen target. The measured rate from the hydrogen target can then be

compared to the rate from the empty cell. However, a distinction has to be made between

the enhancement of the detected neutrons coming from the misidentified protons and the

enhancement coming from the beam blowup effect. The beam blowup effect is due to the

spreading of the electron beam diameter in the presence of the gas in the target. When the

beam spreads, the electrons in the beam have a higher probability to scatter on the aluminum

cell walls. A distinction can be made because, unlike the protons inside of the aluminum cell,

the protons inside of the hydrogen are vector polarized. By building the vector asymmetry

from these events one can determine the size of the polarized proton background.

Similarly to the unpolarized background correction in eqn. 5.7, the polarized background

correction is written as

AV,exp
ed = AV,pol.back

ed (1 + f p) (1 + fh,cell) − AV,pf p(1 + fh,cell), (5.9)

where AV,pol.back is the raw asymmetry measured in the presence of the polarized background,
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AV,p is the proton asymmetry, fh,cell is defined in eqn. 5.8 where ncell is now the number of

cell events in the presence of the hydrogen gas and f p is the ratio of the misidentified proton

event rate, nmis,p to the neutron event rate defined as

f p = nmis,p/ntot, (5.10)
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Figure 5-14: In the left panel the yield from the cell wall scattering in the presence of the
hydrogen gas (shaded curve) is compared to the yield of real quasielastic scattering from
deuterium (clear curve). In the right panel is the ratio of the yields plotted as a function of
missing momentum.

It is estimated that f p (< 0.1 %) is negligible in comparison with fh,cell. The estimate of

f p comes from the veto efficiency estimates, a very small vector asymmetry of the background

events and the absence of a significant difference between f h,cell and f cell. In the following

analysis, f p defined in eqn. 5.10 is neglected. With this assumption, eqn. 5.9 looks identical

to eqn. 5.7. The f cell function with the presence of hydrogen gas in the cell is plotted in fig.

5-14. This function is almost identical to the function measured with the empty cell. From

these two functions one can calculate the beam blow up factor.

The beam blow up factor, which can be defined as the ratio between f cell and fh,cell is
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very close to unity, ∼1.05. The minimal beam blow up due to the gas in the storage cell

can possibly be explained by the collimator at the upstream end of the cell with its inner

diameter smaller than the diameter of the cell.

The correction function fh,cell determined with the hydrogen in the cell is applied to

the raw vector asymmetries in fig. 5-12. Figure 5-15 shows the background-corrected vec-

tor polarization observable, AV
ed(

π
2
, 0) in comparison to the BLASTMC calculation. The

background-corrected asymmetry values are listed in table 5.3.

〈Q2〉 (GeV/c)2 〈pm〉 (GeV/c) Aexp ∆Aexp
stat ∆Aexp

sys

0.0355 0.0418 0.0143 0.0016
0.0747 0.0062 0.0096 0.0002

0.14 0.1230 -0.0270 0.0115 0.0010
0.1730 -0.0320 0.0147 0.0012

0.0354 0.0509 0.0171 0.0020
0.0749 0.0192 0.0111 0.0007

0.20 0.1231 -0.0395 0.0131 0.0015
0.1729 -0.0316 0.0169 0.0012

0.0358 0.0347 0.0254 0.0013
0.29 0.0743 0.0276 0.0166 0.0010

0.1229 -0.0361 0.0200 0.0014

0.0350 -0.0283 0.0340 0.0007
0.0733 -0.0296 0.0249 0.0007

0.38 0.1217 -0.0876 0.0345 0.0022
0.1724 0.0166 0.0475 0.0004

0.0378 -0.1960 0.0880 0.0049
0.0761 -0.0539 0.0459 0.0013

0.50 0.1231 -0.0676 0.0503 0.0017
0.1737 -0.1045 0.0636 0.0026

Table 5.3: Extracted background corrected AV
ed(

π
2
, 0) values. The systematic uncertainty is

due to the uncertainty of the beam and target polarization product, hPz.

The systematic uncertainties quoted in table 5.3 are due to the uncertainty in the mea-

surement of the beam and target polarization product, h · Pz. The source of this and other

systematic uncertainties will be discussed in section 5.8.
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Figure 5-15: Plot of the vector asymmetry corrected for the unpolarized background for Q2

= 0.14 (top-left), 0.20 (top-right), 0.29 (middle-left), 0.38 (middle-right) and 0.50 (bottom)
(GeV/c)2 bins as a function of the missing momentum, pm. The curves are the BLASTMC
calculation with various values of the neutron form factor, a, in units of Galster form factor.
The thick, red line represents the best fit to the data. The error bars shown on the plot are
purely statistical. The effect of the systematic errors will be discussed in section 5.8.
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5.7 Extraction of Gn
E/Gn

M from the Background Cor-

rected Asymmetry

The background corrected asymmetry, AV
ed(

π
2
, 0) is compared to the calculation of this po-

larization observable in BLASTMC with various values of the parameter a defined in the

Platchkov parametrization (see eqn. 2.63) with b = 5.6, such that

Gn
E = a

µnτ

1 + 5.6τ

1

(1 + Q2/0.71)2
. (5.11)

A chi-square χ2
k(ak) is calculated for each set of neutron electric form factors based on

the BLASTMC simulations. The values of χ2
k(ak) are expressed in terms of the asymmetry

values as

χ2
k(ak) =

∑

i

(Aexp
i − Atheory

i )2

(σexp
i )2

, (5.12)

where k is the 〈Q2〉 bin, Aexp
i and Atheory

i are the experimental and theoretical asymmetries

in the ith pm bin and σexp
i is the experimental uncertainty in each bin.

The χ2
k(ak) is expected to be parabolic around the minimum [149]. Hence, χ2

k(ak) is

parametrized as

χ2
k(ak) = τmin +

(ak − τ1)
2

(τ2 + akτ3)2
, (5.13)

where τmin and τ1, τ2, τ3 are the parabolic fit parameters. The minimum of the χ2
k(ak)

corresponds to the parameter amin
k of the theoretical model used in BLASTMC that best

describes the experimental data. Thus, Gn
E/GD = amin

k · (µnτ)/(1 + bτ) corresponds to the

best value of the neutron form factor ratio. The uncertainty of the amin
k in this method is

defined as

χ2
k(a

min
k + ∆amin

k ) = χ2
k(a

min
k ) + 1, (5.14)

where ∆amin
k is the uncertainty of the parameter amin

k . The χ2 minimization is shown in

fig. 5-16. The results of this procedure are collected in table 5.4 The quantity χ2
min/ndf is

the minimum of the χ2 fit in fig 5-16 divided by the number of degrees of freedom. The

χ2
min/ndf in the second Q2 bin is slightly greater than 1. This is primarily due to the value of

the vector asymmetry AV
ed(Q

2 = 0.20) in the last last missing momentum bin (see top-right
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Figure 5-16: χ2 fit for the best value of Gn
E in units of Galster for the momentum transfers

of Q2 = 0.14 (top-left), 0.20 (top-right), 0.29 (middle-left), 0.38 (middle-right) and 0.50
(bottom) (GeV/c)2.
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〈Q2〉 (GeV/c)2 Gn
E/Gn

D ∆Gn
E/Gn

D(stat) ∆Gn
E/Gn

D(sys) χ2
min/ndf

0.14 0.0438 0.0070 0.0031 1.05
0.20 0.0463 0.0062 0.0036 1.27
0.29 0.0624 0.0076 0.0039 0.40
0.38 0.0537 0.0099 0.0040 1.08
0.50 0.0519 0.0155 0.0039 0.55

Table 5.4: Measured values of Gn
E/Gn

D with the statistical and systematic uncertainties. The
source of the systematic uncertainties are discussed in section 5.8.

panel in fig. 5-15) being more than one sigma away from the extracted average value (thick

red line). However, the expected error due to this data point is small and will be accounted

for in the discussion of the systematic uncertainties.

5.8 Systematic Uncertainties

The sources of the systematic uncertainties presented in table 5.4 are discussed in this sec-

tion. The systematic uncertainties in this experiment are dominated by the precision in

the knowledge of the target polarization angle. The second largest contribution is from

the determination of the product of the beam and target polarizations. Other systematic

contributions are negligible in comparison with the first two. Table 5.5 shows the relative

contributions with the overall systematic uncertainty.

Source Uncertainty in % of Galster

Target Polarization Angle (see 5.8.1) 5 %
Beam-Target Polarization (see 5.8.2) 2.5 %

Reconstruction (see 5.8.3) 2.0 %
Cut Dependence (see 5.8.5) 2.0 %

Gn
M (see 5.8.4) 1.5 %

False Asymmetry (see 5.8.7) 1 %
Radiative Corrections (see 5.8.6) 1 %

Total 6.6 %

Table 5.5: Contributions to the overall systematic uncertainty of the Gn
E measurement. The

total uncertainty is calculated by adding the individual contributions in quadrature.

The systematic uncertainties contribute equally in all five Q2 bins. Following is the

discussion of each individual systematic uncertainty source.
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5.8.1 Target Polarization Angle

The angle of the target polarization, θd is fixed by the direction of the holding field magnet.

However, the target polarization angle with respect to the momentum transfer vector, θ∗
d

varies within the BLAST acceptance (see fig. 5-17). Hence, the kinematics of the experiment

deviate from the ~S ⊥ ~q requirement.
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Figure 5-17: Plot of θ∗D for 〈Q2〉 = 0.14 (GeV/c)2 (solid), 〈Q2〉 = 0.20 (GeV/c)2 (dashed)
and 〈Q2〉 = 0.29 (GeV/c)2 (dotted) bins.

If the kinematics are not exactly perpendicular, the parallel asymmetry proportional to

(Gn
M)2 starts to contribute to the overall asymmetry. Since Gn

E is only a few percent of Gn
M ,

any contribution from parallel asymmetry is significant, even when multiplied by the cosine

of an angle close to 90◦. To test the sensitivity of the measurement to the target polarization

angle, the neutron electric form factor was extracted with the assumption of two different

polarization angles. The effect of the target polarization angle on Gn
E measurement was

found to be ∼12 % (of Galster) per degree.
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The target holding field was mapped with the BLAST toroid field on. The precision in

spin angle due to these measurements is on the order of 1 degree. The best measurement

of the polarization angle is done using the tensor polarization observable in elastic electron-

deuteron scattering3. The tensor asymmetry in this reaction has the opposite sign in the

left and right sector. In the tensor analysis the target polarization angle is varied until the

extracted deuterium tensor polarization, Pzz is equal in both sectors (see fig. 5-18 left).

28 29 30 31 32 33 34 35
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Left Sector Analysis

Right Sector Analysis

Combined Analysis

Dθ

zz
P

0 1 2 3 4 5 6 7 8
20

22

24

26

28

30

32

34

36

38

40

 0.51± = 31.32 dθ

Data Set #

 (
d

eg
re

es
)

dθ

Figure 5-18: Target angle calculation using the elastic tensor asymmetry. The target angle is
at the crossing point of the Pzz calculation from the left sector (circles), right sector (squares).
The average target polarization spin angle is found for seven data sets in the right panel.

The extraction of the target polarization angle is split into seven data sets for this analysis

(see fig. 5-18 right). The data in the first set were collected with the cell #2, all other

data sets will cell # 3. The average target polarization angle is found to be [150] θd =

31.32◦ ± 0.51◦. The uncertainty of this measurement is almost purely statistical.

The target polarization angle determined using tensor polarization is in remarkable agree-

ment with the angle calculation from the holding field map (see fig. 5-19), which produces

the elastic cross section averaged value of the target angle of θd = 31.4◦ ± 1.0◦. The un-

certainty in this value is dominated by the systematic uncertainty of the magnetic field

3As mentioned before, the tensor and the vector polarization observables are measured simultaneously.
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measurement. The values of Gn
E are extracted with the polarization angle taken from the

field map and from the tensor asymmetry4. The difference between two methods is ∼2 %.

The final values of Gn
E reported in this work are extracted with the target polarization angle
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Figure 5-19: Elastic scattering luminosity weighted target spin angle profile along z (dark
band) plotted with the calculated target angle from the Pzz measurements (points). Data
from |z| < ±20 cm are used in the analysis.

calculated from the holding field map. However, the tensor analysis provides confidence that

the polarization angle is properly determined. The uncertainty in the target polarization

angle from the combination of the two methods corresponds to a 5% systematic uncertainty

in the determination of Gn
E.

5.8.2 Product of the Beam and Target Polarizations

The product of the beam and target vector polarizations, hPz is extracted from quasielastic

electron scattering reaction with a proton detected in the final state. As mentioned before,

the calculation of this reaction channel is less sensitive to the uncertainties in reaction mech-

anisms at the quasielastic peak. The cross section for this reaction is large enough to limit

the statistical uncertainty of hPz to below 1 %. Figure 5-20 shows the vector polarization

4The target polarization angle from the field map varies along the length of the storage cell, while the
angle from the tensor analysis is assumed constant over the whole length of the target.
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observables in spin-perpendicular and parallel kinematics, AV
ed(

π
2
, 0) and AV

ed(0, 0), respec-

tively. The polarization product was extracted in bins of Q2 < 0.35 (GeV/c)2 with a missing

momentum below 0.15 GeV/c. The resulting hPz is measured to be [151]

hP proton
z = 0.52 ± 0.0035(stat.) ± 0.02(syst.).

A large systematic uncertainty is due to the variation of the hPz over the full Q2 range.
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Figure 5-20: Extraction of the product of the beam and target vector polarizations, hPz

using exclusive quasielastic scattering on deuterium with the detected proton. The values of
the hPz from the perpendicular (left) and parallel (right) kinematics include statistical error
only.

In order to check the consistency of this measurement, a vector asymmetry in parallel

kinematics from electron-neutron quasielastic scattering is used to extract an alternative

value of the hPz. In spin-parallel kinematics the vector polarization observable, AV
ed(0, 0) is

sensitive to a purely kinematic quantity, since Gn
M dominates over Gn

E in both the numerator

and denominator.

The extraction of hPz using the detected neutron is done in the same Q2 range. However,

the fit is carried out over a greater missing momentum range, since the uncertainty of this
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Figure 5-21: Extraction of the product of the beam and target vector polarizations, hPz

using exclusive quasielastic scattering on deuterium with the neutron detected in the final
state. The value of hPz from spin-parallel kinematics includes the statistical error only.

determination is dominated by the statistical errors. The value of hPz is

hP neutron
z = 0.54 ± 0.02(stat.) ± 0.01(syst.),

where the systematic uncertainty is due to the reaction mechanism dependence of the

AV,theory
ed (0, 0) calculation. A good agreement between hPz from the two methods is found.

The value of hP proton
z is used to determine Gn

E. The overall error on hPz contributes an

uncertainty of ±2.5% to the value of Gn
E.

5.8.3 Reconstruction

The systematic shifts in the reconstruction of the missing momentum, pm, in which the fit

for the best value of Gn
E is performed is a potential source of an error. Since the size of each
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bin in missing momentum is much larger than the resolution of the kinematic quantities

the uncertainties due to the resolution are negligible. The systematic misreconstruction

however, is important, especially when the asymmetry changes sign. When the shifts in

the reconstruction are large enough, the events in one bin with a positive asymmetry can

be wrongly assigned to another bin with the negative asymmetry effectively diluting the

asymmetry in both bins. This bin drift was reduced with the kinematic corrections discussed

above. However, some bin drift effects still possibly persist at large missing momentum. The

effect of these bin drifts is rather small. The magnitude of the uncertainty due to the bin

drifts is estimated by considering the effect of the pm > 0.1 (GeV/c)2 bins on the final value

of Gn
E and an estimation of the degree to which the bin drift is present in the data. The

contribution of the uncertainty due to the reconstruction to the total systematic uncertainty

is estimated to be ∼2.0 %.

5.8.4 Value of Gn
M

A good parametrization of the neutron magnetic form factor is needed in order to extract

the value of Gn
E from the form factor ratio measurements listed in table 5.4. This is needed

because Arenhövel’s calculations use a dipole parametrization of the Gn
M . However, Gn

M is

known to deviate up to 5 % from the dipole form in the Q2 region of interest (see fig. 5-22).

In their recent paper [103] Friedrich and Walcher parametrized a dip region of Gn
M by

a Gaussian form. The full parametrization consists of the two dipole forms for the “inner”

and the “outer” charge distributions and the afore-mentioned Gaussian form,

Gn
M =

aout
0

(1 + Q2/aout
1 )2

+
ain

0

(1 + Q2/ain
1 )2

+ aπ
0 (1 − 1

6
Q2/aπ

1 )e
−( Q2

4aπ
1

)
(5.15)

Figure 5-22 shows a comparison of the Friedrich and Walcher parametrization and the world’s

data. The authors did not include data measured by Markowitz [32] and Bruins [33] in their

fit5. The uncertainty of the fit is on the order of 1.5 %, which directly contributes to the

overall systematic uncertainty of Gn
E calculation.

5Both of these data sets used absolute cross section measurements, thus introducing large systematic
uncertainty from the neutron detector efficiency.
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Figure 5-22: Parametrization by Friedrich and Walcher of the neutron magnetic form factor,
Gn

M (solid curve). The data are the same as in fig 2-3. In addition the preliminary data from
the inclusive analysis at BLAST performed by Nikolas Meitanis [152].

5.8.5 Cut Dependence

The cut dependencies arise from a possible enhancement of some kinematic region, where

the asymmetries would differ from calculated values, by applying the cuts to the data. These

dependencies of the extracted value of Gn
E on the kinematic cuts are studied by varying the

cut on the missing mass, Mm. Figure 5-23 shows the values of Gn
E as a function of the width

of the missing mass cut in units of MeV/c2, for each Q2 bin. A small variation is observed

over a large range of the cut width. The variation is statistically insignificant. The missing

mass cut in the final value of Gn
E extraction was chosen to be 100 MeV/c2 which corresponds

to anywhere from 3.5 to 3 sigma of the missing mass peak. The contribution of the cut

dependence on the overall systematic error is estimated to be 2.0 %.
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Figure 5-23: Missing mass cut dependence of Gn
E (in units of Galster) in momentum transfer

bins of Q2 = 0.14 (top-left), 0.20 (top-right), 0.29 (bottom) (GeV/c)2. The line represents
an average value and the yellow band is an error around the mean, assuming that each Gn

E

value is statistically uncorrelated.
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5.8.6 Radiative Corrections

The radiative corrections are needed to account for QED correction to the tree-level diagram

(see fig. 2-1) where the initial or scattered electron radiates a real or virtual photon, thus

changing the kinematics of the reaction. In terms of the radiative corrections the observed

cross section is written as [153]

σobs = (1 + δ)σ0 + σR, (5.16)

where σ0 is the unradiated cross section, δ is the factorized correction and σR is the unfac-

torized bremsstrahlung contribution to the cross section.

The factorized correction, δ is usually large, resulting in a large radiative correction to

the observed cross section. However, δ cancels exactly in the expression for the asymmetry

expressed as

∆AR = AR − A0 =
(1 + δ)σp

0 + σp
R

(1 + δ)σu
0 + σu

R

− σp
0

σu
p

, (5.17)

where AR and A0 are the asymmetries with and without radiative corrections applied, σu

and σp are unpolarized and polarized cross sections, respectively. The relative difference can

be written in terms of δu,p = σu,p
R /σu,p

0 as

∆R =
∆AR

A0
=

δp − δu

1 + δ + δu
(5.18)

Figure 5-24 shows the parameter ∆R in eqn. 5.18 for the case of the spin-perpendicular

kinematics. The calculation was done for e-p elastic scattering using MASCARAD code

developed by Afanasev et al. [154]. However, this calculation is applicable to quasielastic

scattering on deuterium in the PWBA formalism. The difference between the radiated and

non-radiated asymmetry is less than 1 %. Due to the smallness of the radiative effects in the

polarization observable, the radiative corrections have not been implemented at this point.

The systematic uncertainty due to the radiative effects is estimated to be ∼1 %.
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Figure 5-24: Effect of the radiative corrections on beam-target vector polarization observable
in the spin-perpendicular kinematics, A⊥

e,p.

5.8.7 False Asymmetries

As mentioned previously, the asymmetries, Ae, AV
d and AT

ed are expected to be small. The

possible reasons for these asymmetries not being zero could be incorrect determination of the

accumulated charge in each helicity state or, in case of Ae, incorrect averaging over the out-

of-plane angles. All these uncertainties can contribute to the overall systematic uncertainty

in the measurement.

Figure 5-25 shows the plots of these three asymmetries in the perpendicular kinematics.

For these plots the data was combined over the combined Q2 range considered in this work,

to reduce the statistical uncertainty. It is assumed that the false asymmetry in each Q2 bin

is equal to the false asymmetry in the combined Q2 bin. The values of the average false

asymmetries are following

Ae = (−1.489 ± 3.374) × 10−3

AV
d = (−5.140 ± 3.201) × 10−3

AT
ed = (−2.446 ± 5.021) × 10−3.

All false asymmetries are small and consistent with zero. The contribution from the false

asymmetry to the overall systematic error of the measurement is estimated to be less than

1 %.
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Figure 5-25: False asymmetries, Ae (top-left), AV
d (top-right) and AT

ed (bottom) in the spin-
perpendicular kinematics.
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Chapter 6

Discussion and Conclusion

6.1 Discussion of the Results

6.1.1 Phenomenological Fit

The values of Gn
E obtained in this work are consistent with the previous data. The deter-

mination of the electric form factor of the neutron at Q2 = 0.14 (GeV/c)2 is the lowest

Q2 measurement ever performed. This value of Gn
E is in good agreement with the previous

lowest Q2 measurement at 0.15 (GeV/c)2 [117]. Both of these values are in good agreement

with the Platchkov parametrization, where aplatchkov is fixed at 0.906 to match the slope at

Q2 = 0 determined by thermal neutron scattering [77] and where the global fit parameter,

bplatchkov = 3.47 (see blue solid curve in fig. 6-1).

However, the Platchkov parametrization is too rigid to describe the behavior of Gn
E as a

function of Q2. This is illustrated by the high precision data recently obtained at high Q2

at Jefferson Lab Hall C [105]. If aplatchkov is fixed to match the experimentally determined

charge radius of the neutron, then the Platchkov parametrization completely underestimates

the size of Gn
E at large Q2 and produces a large χ2 of 17.61. If the Platchkov parametrization

is fit to the Hall C points at Q2 = 1.13, 1.45 (GeV/c)2, thus predicting the high Q2 behavior,

it underestimates the slope at Q2 = 0 by a significant amount.

Recently, the Mainz A1 collaboration [107] used a different Gn
E parametrization suggested

by Friedrich and Walcher [103] to better match both low and high Q2 behaviors. The

1The χ2 is calculated with the data set which includes the values measured in this work.
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Figure 6-1: The world’s Gn
E data plotted together with the new results from this work. The

statistical and systematic uncertainties are added in quadrature. The solid curve is a fit to
the Platchkov parametrization (eqn. 2.63) with the slope at Q2 = 0 corresponding to the
measured neutron charge radius (a = 0.906 and b = 3.47). The dashed black curve is the fit
of the Friedrich and Walcher parametrization performed by the A1 collaboration [107]. The
dot-dashed red curve is the new fit of the same parametrization done in this work (see table
6.1).
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parametrization includes a smooth contribution consisting of the sum of two dipole functions

normalized to produce Gn
E(Q2 = 0) = 0 and a bump contribution parametrized by a sum of

two Gaussians,

Gn
E =

a10

(1 + Q2/a11)2
+

a20

(1 + Q2/a21)2
+ abQ

2



e
− 1

2

(

Q−Qb
σb

)2

+ e
− 1

2

(

Q+Qb
σb

)2


 , (6.1)

where a20 = −a10 for the normalization at zero. The value of Qb determines the position of

the bump and the value of σb corresponds to its width. Since the bump part in eqn. 6.1 is

not entirely a function of Q2, a proper symmetrization is done by addition of two Gaussians.

The magnitude of the bump is dominated by the value of the first Gaussian, e
− 1

2

(

Q−Qb
σb

)2

,

since both Q and Qb are positive definite. Friedrich and Walcher postulated that the smooth

dipole term would correspond to the constituent quark core and the bump describes the pion

cloud around the core.

The fit of this parametrization performed by the A1 collaboration matches well to the

existing data with a χ2 significantly lower than that obtained with the refitted Platchkov

parametrization (see black dashed line fig. 6-1). The A1 fit is successful in describing the

high Q2 behavior predicted by the Jefferson Lab Hall C data. However, the value of this fit

at Q2 = 0.2 (GeV/c)2 is one sigma and a half away from the value of the second Q2 point

measured in this work. Also, the original A1 fit does not reproduce the correct slope at

Q2 = 0 predicted by the experimentally determined neutron charge radius. Using eqn. 6.1

the charge radius of the neutron is defined as2

−1

6
〈r2

n〉 =
dGn

E

dQ2
|Q2=0 = −2

(

a10

a11

+
a20

a21

)

+ 2abe
− Q2

b

2σ2
b (6.2)

Accordingly, the contribution to the neutron charge radius from the smooth term is rather

small (∼30 %). Thus, the charge radius is dominated by the bump term in the parametriza-

tion.

A new BLAST parametrization is introduced, where ab is fixed by the charge radius (see

red dot-dashed line in fig 6-1). The parameters found in the BLAST fit are listed in table

2Note that this requirement correlates the contributions from the individual uncertainties of the smooth
and bump parts to the total uncertainty of the fit.
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a10 a11 a20 a21 ab Qb σb 〈r2
n〉 ndf χ2/ndf χ2

total

(GeV/c)2 (GeV/c)2 (GeV/c)−2 (GeV/c) (GeV/c) fm2

BLAST 1.0 1.27(1.9) 1.73(fixed) -1.27(fixed) 1.54(1.2) 0.224(fixed) 0.20(2.6) 0.24(2.9) -0.115(fixed) 14 0.464 6.48
A1 [107] 1.2974 1.7301(fixed) -1.2974 1.5479 0.19426 0.3421 0.16758 -0.052 13 0.597 7.76

Table 6.1: Comparison between the global phenomenological fits to the world’s Gn
E data

performed in this work and performed by A1 collaboration. The errors of the last significant
digits are quoted in parentheses. The χ2 calculation for A1 fit includes the results from this
work.

6.1. A marginally better χ2 is achieved in the BLAST fit, while preserving the correct slope

at zero momentum transfer. The comparison in table 6.1 between the new and A1 fits shows

that the smooth term in the parametrization is the same in the new fit, while the contribution

from the bump is significantly different. The new fit finds that the amplitude of the bump

(determined by ab) is larger, the bump maximum (determined by the Qb) occurs at a lower

Q and the bump is significantly more spread out according to the width parameter, σb.

Figure 6-2 shows the relative contributions from the smooth dipole and the Gaussian

bump. The slope at low Q2 is dominated by the contribution from the bump. This means

that the charge radius of the neutron is determined by the properties of the pion cloud. At

high Q2, which corresponds to a small distance in coordinate space, Gn
E is dominated by

the dipole form corresponding to the constituent quark core. This fact also preserves the

asymptotic behavior predicted by pQCD calculations. This situation is consistent with the

pion cloud picture of the neutron charge distribution.

The recent data from Hall C drastically improved the precision of the parametrization

at high Q2, thus shrinking the error band around the BLAST fit. The precision of the fit

at medium Q2 is determined by the spread of the existing world’s data. The precision at

extremely low Q2 is constrained by the knowledge of the neutron charge radius, 〈r2
n〉 (see fig.

6-3).

Figure 6-4 shows a ratio of the Gn
E data to the best Platchkov parametrization with the

fixed slope at Q2 = 0 (solid blue line in fig. 6-1). The data hint at an oscillatory behavior

in the low and medium Q2 ranges and the asymptotic deviation from Galster at Q2 > 1

(GeV/c)2. However, more precise data at low Q2 as well as additional data at very high Q2

are needed.
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Figure 6-2: Contributions to Gn
E from parts of the phenomenological parametrization (see

eqn. 6.2). The green dashed curve is the smooth contribution to the parametrization. The
blue dotted curve is the bump contribution. The solid red line is the total. The gray and
green bands are one- and two-sigma error bands. The black points are the world’s data.

6.1.2 Charge Density of the Neutron

Relativity plays a central role in the understanding of the nucleon’s charge distribution. In

fact the transfer of momentum in the scattering process necessarily involves two reference

frames and hence one cannot simply work with the charge operator in the nucleon’s rest frame

[155]. In a simplistic non-relativistic model the charge distribution in the coordinate space

would be constructed as a Fourier transform of the Sachs form factors in the Breit frame to

provide a qualitative understanding of the charge structure of the neutron. In particular,

while not actually the neutron’s charge distribution, it is interesting to examine the Fourier

transform of the parametrization in eqn. 6.1. The smooth part of this parametrization has

an exponential analytical form. However, the contribution due to the bump can only be

determined numerically.

Figure 6-5 shows the contributions to the Fourier transform from the smooth and bump

terms in the parameterization. The core at the short distance is dominated by the dipole
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Figure 6-3: Precision of the BLAST fit, ∆Gn
E/Gn

E.

content of the parametrization. If the core is connected to the constituent quark distribution,

then the positive up quarks, with charge of + 2
3

are located centrally in the neutron, whereas

the negative down quarks, with charge of − 1
3

are pushed to the edge of the neutron. The pion

cloud due to the bump content of the parametrization has positive and negative components.

The pion cloud dominates the distribution at large distances.

The full charge density distribution is plotted in fig. 6-6. It is compared with that

calculated with the original Galster parametrization3. The positive content of the core

appears to be more on the inside than what is predicted by the Galster parametrization.

This difference is driven by the recent high Q2 data from Jefferson Lab being significantly

above the Galster parametrization. At the same time, the negative part of the distribution

extends further out than the “Galster” prediction.

The positive part of the pion cloud almost exactly cancels the negative part of the core.

Thus, in the BLAST parametrization the neutron appears to consist of the very narrow

positive core distribution and the diffuse negative pion cloud, which extends to very large

3In the context of this discussion the Galster parametrization is the special case of the Platchkov para-
metrization with aplatchkov = 1, which explicitly violates the slope at Q2 = 0.
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Figure 6-4: Ratio of the world’s data (black points) and fit 1 in table 6.1 to the refitted
Platchkov form (solid blue line in fig. 6-1.)

distances.

This discussion is purely qualitative since it does not take the relativistic effects into

account. The more sophisticated Fourier transforms of the Sachs form factors can be devised

to account for at least some aspects of the relativistic effects. One such scheme was suggested

by J. Kelly [156].

The precision of the fit of eqn. 6.1 is significantly improved with the new BLAST data.

There is a significant improvement in understanding of the neutron charge distribution in

comparison to the original Galster parametrization. This can be clearly seen in the close up

plot of the charge distribution at small distances (see fig. 6-6 right).

192



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.01

-0.005

0

0.005

0.01

0.015 Smooth Dipole

Bump

Total

r (fm)

)
-1

(r
) 

(f
m

ρ2 r

Figure 6-5: Relative contributions to the charge density of the neutron from the smooth
(solid red line) and bump (dashed blue line) parts.

6.1.3 Nucleon Effective QCD Models

Figure 6-7 shows a blowup of a low Q2 region of the µnG
n
E/Gn

M plot along with the results

from this work. The new data indicate some disagreement with most QCD effective field

models at low Q2. The only model that is in good agreement with the data in this work

is the diquark model, which is in disagreement with the data at higher momentum transfer

(see discussion in section 2.5.9).

It is clear that the data indicate a structure at low Q2 which is not yet correctly under-

stood in terms of the effective QCD field models.

6.2 Conclusion

The electric form factor of the neutron has been measured at five four-momentum transfer

points of 0.14, 0.20, 0.29, 0.38 and 0.50 (GeV/c)2 using a stored polarized electron beam and

a polarized gas internal target with the BLAST detector at the MIT-Bates Linear Accelerator

Center. Good agreement with the previous world’s data was found. The parametrization
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Figure 6-6: Charge density of the neutron calculated from the fit to parametrization in
eqn. 6.1 (solid red line with gray error band) and from the original Galster parametrization
(dashed blue line with gray error band). On the right is the blowup at r < 2.0 fm.

suggested by Friedrich and Walcher was used to fit the data with slope at Q2 = 0 fixed to the

measured value of the neutron charge radius. The data point at 0.14 (GeV/c)2 is the lowest

Q2 point ever measured using polarized electron scattering. This data point is expected

to improve the precision of the strange form factor measurements at low four momentum

transfer.

The BLAST experiment is currently in phase II of its experimental program. Based

on preliminary estimates the neutron data sample at BLAST will be doubled, thus further

reducing the statistical uncertainties. The systematic uncertainties, particularly due to the

knowledge of the target holding field, are expected to be significantly reduced.
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Figure 6-7: Plot of µnGn
E/Gn
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and curves are explained in fig. 2-20 and the red squares are the results of this work.
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Appendix A

Boosts and Rotations at BLAST

A.1 Variable Naming Convention

There are two reference frames which are relevant to the kinematic analysis of the electro-

disintegration of deuterium at BLAST. The first is the laboratory frame, in which the target

is at rest. The second such frame is the center-of-mass frame, in which the sum of all

momenta in the final state is equal to zero.

There are also two coordinate systems. The first coordinate system is the BLAST system.

The unit vectors in this frame are defined as

+ẑB ≡ in the direction of electron beam

+ŷB ≡ directed upward

+x̂B ≡ ŷB × ẑB

The second coordinate system is the “q-vector”, where the momentum transfer vector

defines the ẑ direction. Following the Madison convention the unit vectors in this system

are defined as

+ẑQ ≡ ~qB/|~q|
+ŷQ ≡ (~kB × ~k

′B)/(|k||k′|)
+x̂Q ≡ ŷQ × ẑQ,

where ~qB is the momentum transfer three-vector, and ~kB and ~k
′B are the initial and final
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momenta of the electron, respectively.

All kinematic variables in this appendix come with following letters denoting the two

inertial frames and two coordinate systems

L ≡ laboratory frame

C ≡ center-of-mass frame

B ≡ BLAST coordinate system

Q ≡ q-vector coordinate system
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A.2 Kinematic Variable Listing

Listed in this section are all kinematic variables relevant to the electro-disintegration of

deuterium reaction. The following kinematic variables are defined in the scattering plane,

defined as the plane perpendicular to the +ŷQ axis.

εL ≡ energy of the initial electron in the lab frame

kL ≡ three-momentum of the initial electron in lab frame

ε′L ≡ energy of the scattered electron in the lab frame

k′L ≡ three-momentum of the scattered electron in the lab frame

θL,B
e′ ≡ polar angle of the scattered electron in the lab frame and

BLAST coordinate system

φL,B
e′ ≡ azimuthal angle of the scattered electron in the lab frame

and BLAST coordinate system

ωL ≡ energy of the virtual photon in the lab frame

qL ≡ three-momentum magnitude of the virtual photon in the lab

frame

θL,B
q ≡ polar angle of the virtual photon in the lab frame

and BLAST coordinate system

φL,B
q ≡ azimuthal angle of the virtual photon in the lab frame

and BLAST coordinate system
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The kinematic variables of the initial and final hadronic system are defined as

εL
p ≡ energy of the recoil proton in the lab frame

pL
p ≡ three-momentum magnitude of the recoil proton in the lab frame

θL,B
p ≡ polar angle of the recoil proton in the lab frame and

BLAST coordinate system

φL,B
p ≡ azimuthal angle of the recoil proton in the lab frame and

BLAST coordinate system

εC
p ≡ energy of the recoil proton in the center-of-mass frame

pC
p ≡ three-momentum magnitude of the recoil proton in the center-of-mass frame

θC,Q
p ≡ polar angle of the recoil proton in the

center-of-mass frame and Q coordinate system

φC,Q
p ≡ azimuthal angle of the recoil proton in the

center-of-mass frame and Q coordinate system

εL
n ≡ energy of the recoil neutron in the lab frame

pL
n ≡ three-momentum magnitude of the recoil neutron in the lab frame

θL,B
n ≡ polar angle of the recoil neutron in the lab frame and

BLAST coordinate system

φL,B
n ≡ azimuthal angle of the recoil neutron in the lab frame

and BLAST coordinate system

εC
n ≡ energy of the recoil neutron in the center-of-mass frame

pC
n ≡ three-momentum magnitude of the recoil neutron in the

center-of-mass frame

θC,Q
n ≡ polar angle of the recoil neutron in the

center-of-mass frame and Q coordinate system

φC,Q
n ≡ azimuthal angle of the recoil neutron in the

center-of-mass frame and Q coordinate system
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Finally, there are a few remaining kinematic quantities that are useful to understanding

the formalism in which the differential cross section of the electro-disintegration is calculated.

These quantities are defined as

pL
m ≡ three-momentum magnitude of the missing momentum in the lab frame

pC
m ≡ three-momentum magnitude of the missing momentum in the

center-of-mass frame

εC
np ≡ total energy of the recoil proton and neutron

in the center-of-mass frame

T C
np ≡ total kinetic energy of the recoil proton and neutron

in the center-of-mass frame

qC ≡ three-momentum magnitude of the virtual photon in the

center-of-mass frame

A.3 Kinematic Relations

All kinematic information measured in the experiment is in the lab frame and in the BLAST

coordinate system. The scattered electron’s four-momentum vector is written as1

K ′ =
(

ε′L, ε′L
[

sinθL,B
e′ cosφL,B

e′ x̂B + sinθL,B
e′ sinφL,B

e′ ŷB + cosθL,B
e′ ẑB

])

(A.1)

The four-momentum of a detected hadron (proton or neutron) is defined in the similar fashion

as

P ′
p =

(

εL
p , kL

p

[

sinθL,B
p cosφL,B

p x̂B + sinθL,B
p sinφL,B

p ŷB + cosθL,B
p ẑB

])

, (A.2)

and

P ′
n =

(

εL
n , kL

n

[

sinθL,B
n cosφL,B

n x̂B + sinθL,B
n sinφL,B

n ŷB + cosθL,B
n ẑB

])

(A.3)

These are all of the kinematic variables measured by the BLAST detector. All other quan-

tities have to be calculated from them.

1This equation is written in ultra-relativistic approximation, where the mass is the electron is neglected.
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From Eqn. (A.1), the energy transfer in the lab frame is defined as

ωL = εL − ε′L, (A.4)

and the four-momentum transfer squared2 is then

Q2 ≡ 4εLε′L sin2
(

θL,B
e′ /2

)

(A.5)

The polar and azimuthal angles of the three-momentum transfer is given in

eqn. (A.1) as

cosθL,B
q =

εL − ε′L cos θL,B
e′

qL
(A.6)

φL,B
q = φL,B

e′ + π (A.7)

The Lorentz boost into the center-of-mass system is govern by a set of kinematic quan-

tities. One such quantity is the total four-momentum squared of the final system, otherwise

known as Mandelstam variable, s, defined as

s ≡
(

P µ
p + P µ

n

)2
(A.8)

Using the four-momentum conservation, s is given in the lab frame as

s =
(

εL
p + εL

n

)2 −
(

~pL
p + ~pL

n

)2
=
(

ωL + md

)2 −
(

qL
)2

, (A.9)

where md is the mass of the deuteron. However, in the center-of-mass frame, s is simply

equal to the square of the total center-of-mass energy, since the total momentum is zero.

s =
(

εC
p + εC

n

)2
(A.10)

Using the fact that in the center-of-mass frame pC
p = pC

n ≡ pC , it can then be shown that

2Note that that Q2 ≡ (qL)2 − (ωL)2 ≥ 0.
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pC
p = pC

n ≡ pC =
([s − (mp + mn)(mp + mn)] [s − (mp − mn)(mp − mn)])1/2

4s
, (A.11)

where mp and mn are the respective masses of the proton and neutron.

Hence, the momentum of a hadron in the center-of-mass system can be determined using

only kinematic information from the scattered electron.

A convenient variable often used in calculations of the electro-disintegration of deuterium

is the kinetic energy of the center-of-mass system [79]. This variable can be simply expressed

in terms of the Mandelstam variable s as

T C
np =

√
s − mp − mn, (A.12)

where mp and mn are masses of the proton and neutron, respectively.

A.4 Lorentz Transformations

Transforming kinematic variables from the (L,B) to the (C,Q) system is done by applying

Lorentz rotations and boosts. The rotation matrix in question (which is denoted by R) maps

a three-momentum vector in the (L,B) system into the (L,Q) system, such that















pL,Q
x

pL,Q
y

pL,Q
z















= R















pL,B
x

pL,B
y

pL,B
z















(A.13)

where any three-component vector in the (L,B) system is given by

~pL = pL,B
x x̂B + pL,B

y ŷB + pL,B
z ẑB

= pL
[

sin θL,B
p cos φL,B

p x̂B + sin θL,B
p sin φL,B

p ŷB + cos θL,B
p ẑB

]

. (A.14)

The same vector in the (L,Q) system is given by
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~pL = pL,Q
x x̂Q + pL,Q

y ŷQ + pL,Q
z ẑQ

= pL
[

sin θL,Q
p cos φL,Q

p x̂Q + sin θL,Q
p sin φL,Q

p ŷQ + cos θL,Q
p ẑQ

]

. (A.15)

As was mentioned before, the ẑ direction in the (L,Q) system is defined by the direction

of ~q in the (L,B) system, thus ẑQ can be written as

ẑQ ≡ ~qL/|~qL| =
[

sin θL,B
q cos φL,B

q x̂B + sin θL,B
q sin φL,B

q ŷB + cos θL,B
q ẑB

]

(A.16)

By definition, the y-component of a three-vector in the (L,Q) system is ŷQ ≡ k̂L × k̂′L.

However, this equation can be expressed more conveniently as ŷQ = ẑQ × ẑB. Using eqn.

(A.16), ŷQ is defined in terms of the q-vector’s polar and azimuthal angles as

ŷQ = sin φL,B
q x̂B − cos φL,B

q ŷB. (A.17)

Since x̂Q ≡ ŷQ × ẑQ, the x-component in the (L,Q) system is written as

x̂Q = − cos θL,B
q cos φL,B

q x̂B − cos θL,B
q sin φL,B

q ŷB + sin θL,B
q ẑB. (A.18)

From eqns. (A.16), (A.17), and (A.18) R is written in the matrix form as

R =















− cos θL,B
q cos φL,B

q − cos θL,B
q sin φL,B

q sin θL,B
q

sin φL,B
q − cos φL,B

q 0

sin θL,B
q cos φL,B

q sin θL,B
q sin φL,B

q cos θL,B
q















(A.19)

The polar and azimuthal angles of any vector in (L,Q) system can be defined in terms of

the angles of this vector in the (L,B) system and in terms of the q-vector angles as

cos θL,Q
p = p̂L · ẑQ =

pL,Q
z

pL

= cos θL,B
p cos θL,B

q + sin θL,B
p sin θL,B

q cos
(

φL,B
q − φL,B

p

)

, (A.20)
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and

tan φL,Q
p = pL,Q

y /pL,Q
x

= sin θL,B
p sin

(

φL,B
q − φL,B

p

)

/
[

cos θL,B
p sin θL,B

q − sin θL,B
p cos θL,B

q cos
(

φL,B
q − φL,B

p

)]

. (A.21)

The Lorentz boost into the center-of-mass system, (C,Q) is along the ẑQ direction. Thus,

only the vector components along ẑQ are be boosted, whereas vector components perpendic-

ular to ẑQ are not. The Lorentz boost has the following matrix form





















εC

pC,Q
x

pC,Q
y

pC,Q
z





















=





















γ 0 0 −γβ

0 1 0 0

0 0 1 0

−γβ 0 0 γ









































εL

pL,Q
x

pL,Q
y

pL,Q
z





















, (A.22)

where γ ≡ (1 − β2)−1/2. The Lorentz boost parameter β is calculated from definition of the

center-of-mass frame. The sum of all momenta in the final state equals to the momentum of

the virtual photon. In the center-of-mass frame this sum is identically zero. Therefore, one

gets that

(p(p+n))
C,Q
z = 0 = γ

[

qL − β
(

ωL + md

)]

. (A.23)

It follows that β and γ are functions of the virtual photon’s momentum and energy,

β =
qL

ωL + md
, (A.24)

γ =
ωL + md

√

(ωL + md)2 − (qL)2
, (A.25)

qC =
mdq

L

√

(ωL + md)2 − (qL)2
. (A.26)

Using eqns. (A.24) and (A.25) in (A.22), the final form of the Lorentz boost becomes
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



















εC

pC,Q
x

pC,Q
y

pC,Q
z





















=
ωL + md

√

(ωL + md)2 − (qL)2





















1 0 0 − qL

ωL+md

0 1 0 0

0 0 1 0

− qL

ωL+md
0 0 1









































εL

pL,Q
x

pL,Q
y

pL,Q
z





















. (A.27)

Since only the components along the q-vector are effected by the Lorentz boost, the

azimuthal angle in the (L,Q) system does not change its value. That is,

φC,Q
p = φL,Q

p . (A.28)

The polar angle in the (C,Q) system can be expressed as

cos θC,Q
p =

γ

pC

[

pL cos θL,Q
p − βεL

]

, (A.29)

where

(pC)2 = (pL sin θL,Q
p )2 + γ2(pL cos θL,Q

p − βεL)2. (A.30)

A.5 Jacobians and Cross Sections

The experimental measurement of the differential cross section for the reaction e + d →
e + p + n is in the (L,B) system. In general, the differential cross sections is a function of

five variables,

σexp =
d5σ

dωLdΩL,B
e′ dΩL,B

N

, (A.31)

where N represents the detected nucleon and Ωe′ and ΩN are the respective solid angles of

the detected scattered electron and nucleon.

However, the theoretical differential cross section is calculated in the (C,Q) system. As

such, the theoretical cross sections can be written as

σtheory =
d5σ

dωLdΩL,B
e′ dΩC,Q

N

. (A.32)
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In order to compare the measured cross section observables with the BLASTMC predic-

tions σtheory in (C,Q) has to be transformed into the (L,B) frame, by the following formula

σexp = σtheory ∂ΩC,Q
N

∂ΩL,B
N

, (A.33)

where ∂ΩC,Q
N /∂ΩL,B

N is the Jacobian. The property of the Jacobian is such that,

∂ΩC,Q
N

∂ΩL,B
N

=

(

∂ΩL,Q
N

∂ΩL,B
N

)(

∂ΩC,Q
N

∂ΩL,Q
N

)

. (A.34)

However, since the rotations do not change the unit solid angle, it follows that
(

∂θL,Q
N /∂θL,B

N

)

= 1.

Thus, the Jacobian becomes

∂ΩC,Q
N

∂ΩL,B
N

= det









∂ cos θC,Q

N

∂ cos θL,Q

N

∂φC,Q

N

∂ cos θL,Q

N

∂ cos θC,Q

N

∂φL,Q

N

∂φC,Q

N

∂φL,Q

N









=
γ
(

1 − βεL
N

pL
N

cos θL,Q
N

)

[

sin2 θL,Q
N + γ2

(

cos θL,Q
N − βεL

N

pL
N

)2
]3/2

, (A.35)

where pL
N and cos θL,Q

N are the momentum and polar angle of the detected nucleon.
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